
Squirrel: Testing Database Management Systems with
Language Validity and Coverage Feedback

Rui Zhong†∗, Yongheng Chen§∗, Hong Hu§†, Hangfan Zhang†, Wenke Lee§ and Dinghao Wu†

†Penn State University §Georgia Institute of Technology

Abstract

Fuzzing is an increasingly popular technique for verifying soft-
ware functionalities and finding security vulnerabilities. However,
current mutation-based fuzzers cannot effectively test database
management systems (DBMSs), which strictly check inputs for
valid syntax and semantics. Generation-based testing can guaran-
tee the syntax correctness of the inputs, but it does not utilize any
feedback, like code coverage, to guide the path exploration.

In this paper, we develop Sqirrel, a novel fuzzing framework
that considers both language validity and coverage feedback to test
DBMSs. We design an intermediate representation (IR) to maintain
SQL queries in a structural and informative manner. To generate
syntactically correct queries, we perform type-based mutations
on IR, including statement insertion, deletion and replacement.
To mitigate semantic errors, we analyze each IR to identify the
logical dependencies between arguments, and generate queries that
satisfy these dependencies. We evaluated Sqirrel on four popular
DBMSs: SQLite, MySQL, PostgreSQL and MariaDB. Sqirrel found 51
bugs in SQLite, 7 in MySQL and 5 in MariaDB. 52 of the bugs are fixed
with 12 CVEs assigned. In our experiment, Sqirrel achieves 2.4×-
243.9× higher semantic correctness than state-of-the-art fuzzers,
and explores 2.0×-10.9×more new edges than mutation-based tools.
These results show that Sqirrel is effective in finding memory
errors in database management systems.

CCS Concepts

• Security and privacy→Database and storage security; Soft-
ware and application security.

Keywords

Database security; Coverage-guided testing; Language validity

ACM Reference Format:

Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and
Dinghao Wu. 2020. Sqirrel: Testing Database Management Systems with
Language Validity and Coverage Feedback. In 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’20), November 9–13, 2020,

∗ The two lead authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417260

Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3372297.3417260

1 Introduction

Database Management Systems (DBMSs) are the integral compo-
nents of modern data-intensive systems [8, 9, 12, 28, 38, 57]. Like
all other complicated systems, DBMSs contain many bugs that not
only affect their functionalities but also enable malicious attacks.
Among all the threats, the infamous memory error bugs enable
attackers to leak and even corrupt memory of running DBMS pro-
cesses, which may finally lead to remote code execution [27, 37],
database breach [7, 29] or denial-of-service (DoS) [15, 23]. For ex-
ample, the recent “Collection #1” data breach reveals 773 million
email addresses and 21 billion passwords [35].

Generation-based testing techniques are the de facto bug-finding
tools for DBMSs [5]. These techniques require developers to create
a formal model that precisely captures the definition of SQL (Struc-
tured Query Language). Based on the model, the tools enumerate
all possible SQL queries to verify the functionalities of DBMSs or
find bugs. However, generation-based testing tools have limited
effectiveness as they distribute the effort evenly to every SQL query.
Considering the infinite input space and rare bug-triggering queries,
this bruteforce-like enumeration is ineffective in finding memory
error bugs from DBMSs.

In recent years, fuzzing has been widely adopted as a software
testing technique to detect memory error vulnerabilities [32, 42, 45,
65]. Different from generation-based testing, fuzzing relies on the
random mutation to create new test cases, and utilizes feedback,
like code coverage, to guide the input space exploration. Starting
from the seed corpus, a fuzzer randomly mutates existing inputs,
like flipping several bits, to generate slightly different variants. It
runs the target program with the new input and detects abnormal
behaviors such as execution crashes and assertion failures. During
the execution, the fuzzer also records the code path information,
like executed blocks or branches. The input that triggers new code
paths has a higher priority to be selected for another round of muta-
tion. With a large amount of effort spent on improving the fuzzing
efficiency [33, 48, 62] and efficacy [25, 30, 41, 50], fuzzers have suc-
cessfully found thousands of bugs from popular applications [54].

However, it is challenging to apply fuzzing techniques to test
DBMSs, as DBMSs perform two correctness checks, the syntactic
check and the semantic check before executing an SQL query. Specif-
ically, the DBMS first parses each SQL query to get its syntactic
meaning. If the query has any grammar errors, the DBMS will stop
the execution and immediately bail out with an error message. Oth-
erwise, the DBMS further checks the query for semantic errors, like
using a non-existent table, and will bail out in any case of semantic

https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260

errors. After these two checks, the DBMS creates several execution
plans and picks the most efficient one to execute the query. There-
fore, to reach the deep logic of a DBMS, the query should be correct
syntactically and semantically.

Random byte mutation used by current fuzzing techniques can-
not easily generate syntax-correct or semantics-correct inputs. For
example, AFL, the representative mutation-based fuzzer [65], can
generate 20 million queries for SQLite [4] within 24 hours, but
only 30% of them can pass the syntax check, and 4% have correct
semantic meaning. However, most of the DBMS code is responsible
for query plan construction, optimization, and execution, and only
a small portion is used for syntax-check and semantics-check. For
example, 20,000 semantics-correct queries generated by AFL trigger
19,291 code branches in SQLite, while the same number of syntax-
incorrect queries only cover 9,809 branches – only 50.8% of the
former. Therefore, current fuzzing techniques cannot trigger the
deep logic of DBMSs nor comprehensively explore program states.

In this paper, we propose a system, Sqirrel, to address these
challenges so that we can effectively fuzz DBMSs. Our system
embeds two key techniques, the syntax-preserving mutation and
the semantics-guided instantiation. To generate syntax-correct SQL
queries, we design an intermediate representation (IR) to maintain
queries in a structural and informative manner. Each IR statement
contains at most two operands, and each operand is also another IR
statement. Each IR has a structure type that indicates the syntactic
structure (e.g., SELECT a FROM b), and data types (e.g., table name).
Before the mutation, our system strips concrete data from the IR
and only keeps a skeleton of operations. Then, we perform three
random mutations, including inserting type-matched operands,
deleting optional operands or replacing operands with other type-
matched ones. The type-based mutation guarantees the generated
query has the correct syntax. Next, we perform the query analysis
to figure out the expected dependencies between different IR data.
For example, the data in a SELECT clause should be a column of
the table in the FROM clause. We fill each stripped IR with concrete
data, and make sure they satisfy all expected dependencies. At
last, we translate the IR back into SQL and feed it to the DBMS
for testing. Sqirrel combines the benefits of the coverage-based
fuzzing (i.e., guided exploration) and the model-based generation
(i.e., high language correctness), and thus can trigger the deep logic
of DBMSs and find severe bugs.

We implement Sqirrel with 43,783 lines of C++ code, which
mainly focuses on the syntax-preserving mutation and the
semantics-guided instantiation. We reuse AFL’s code for coverage
collection and input prioritization. Our generic design of Sqirrel
should work with other fuzzers after some engineering effort.

To understand the effectiveness of our system, we use Sqirrel
to test four popular DBMSs: SQLite, MySQL, PostgreSQL and MariaDB.
Sqirrel successfully found 63memory error issueswithin 40 days,
including 51 bugs in SQLite, 7 bugs in MySQL and 5 bugs in MariaDB.
As a comparison, Google OSS-Fuzz detected 19 bugs from SQLite
in 40 months and 15 bugs from MySQL in 5 months [33]. We have
responsibly reported all of these bugs to the DBMS developers and
received positive feedback. At the time of paper writing, 52 bugs
have been fixed. We even get CVE numbers for 12 bugs due to their
severe security consequences, like stealing database contents.

parse
validation
optimization & execution

Original query
SELECT c2, c6
FROM t1, t2
WHERE t1.c1 = t2.c5

bitflip ‘SELECT’

change table name
Database Management System

syntax error
semantic error

c1 c2
1 alice
2 bob

alice read

t1

After mutation
RELECT c2, c6
FROM t1, t2
WHERE t1.c1 = t2.c5

After generation
SELECT c2, c6
FROM t1, t2
WHERE t1.c1 = t3.c5

c5 c6
1 read
3 writet2

Figure 1: Challenges of testing DBMSs. A DBMS takes four steps to
process one SQL query. Among them, parse checks syntactic correctness,
and validation examines semantic validity. Random mutation unlikely guar-
antees the syntactic correctness, while grammar-based generation may fail
to enforce semantic correctness.

We inspect various aspects of fuzzing, and compare Sqirrel
with other state-of-the-art tools, including the mutation-based
fuzzer AFL and Angora, the generation-based tool SQLsmith, the
structural fuzzer GRIMOIRE and the hybrid fuzzer QSYM. During the
24-hour testing, Sqirrel successfully finds nine unique bugs while
others detect one or zero bugs. Sqirrel discovers 2.0×-10.9×more
new edges than mutation-based tools, and achieves a comparable
result to the generation-based tester SQLsmith. It also gets 2.4×-
243.9× higher semantic correctness than other tools.

We make the following contributions in this paper:
• We propose syntax-preserving mutation and semantics-guided
instantiation to address the challenges of fuzzing DBMSs.
• We implement Sqirrel, an end-to-end system that combines
mutation and generation to detect DBMS bugs.
• We evaluated Sqirrel on real-world DBMSs and identified 63
memory error issues. The result shows that Sqirrel outper-
forms existing tools on finding bugs from DBMSs.

We have released the code of Sqirrel online (https://github.com/
s3team/Squirrel) to help DBMS developers test their products and
to boost future research in securing DBMSs.

2 Problem Definition

In this section, we first briefly describe how a DBMS handles SQL
queries. Then, we introduce existing DBMS testing techniques and
illustrate their limitations in finding bugs hidden in the deep logic.
Finally, we present our insight to solve this problem.

2.1 Query Processing in DBMS

Modern DBMSs usually process an SQL query in four phases: parse,
validation, optimization and execution [6], as shown in Figure 1.
After receiving an SQL query, the DBMS first parses the query to
get its syntactic meaning. The parser breaks the query into indi-
vidual tokens, and checks them against the grammar rules. If any
syntactic error is detected, the DBMS will immediately terminate
the execution and return an error message to the client. Second, the
DBMS checks the semantic correctness of the query in the valida-
tion phase, like whether tables exist in the database or columns are
unambiguous. Most semantic errors can be detected in this phase.
Next, in the optimization phase, the query optimizer constructs
several possible query plans and attempts to determine the most

https://github.com/s3team/Squirrel
https://github.com/s3team/Squirrel

efficient one for executing the given query. Finally, the DBMS ex-
ecutes the chosen plan on the database and sends the result back
to the client. Therefore, the execution will reach the second phase
only if the query is syntactically correct, and will proceed to the
last two phrases if the query is semantically correct.
Motivating Example. The "Original query" in Figure 1 first joins
two tables t1 and t2, and searches for the rows where the c1 column
of t1 is the same as the c5 column of t2. For each matched row,
the query returns the value of c2 and c6. The DBMS finds that
this query passes the syntactic check and the semantic check. It
searches in the database and finally returns "alice read".

2.2 Challenges of DBMS Testing

There are mainly two ways to generate SQL queries for testing
DBMSs: model-based generation and random mutation. The model-
based generation follows a precise grammar-model and thus can
construct syntactically correct inputs. For example, SQLsmith [5],
a popular DBMS testing tool, generates syntax-correct test cases
from the abstract syntax tree (AST) [59] directly. However, without
any guidance, the model-based generation sequentially scans the
whole input space. Considering that many queries are handled in
the same way by DBMSs, this method cannot efficiently explore
the program’s state space. Further, the generation-based method
can hardly guarantee the semantic correctness [34], and queries
with incorrect semantics will be filtered out by the DBMS during
the validation. Figure 1 shows a query constructed by a generator
(After generation). Although this query is syntactically correct, it
cannot be executed because the table t3 in the WHERE clause does
not exist in the current database.

Random mutation updates existing inputs to generate new ones.
To improve the performance, fuzzers utilize the feedback from pre-
vious executions to evaluate the priority of the generated inputs. If
the feedback indicates the previous input is interesting, like trigger-
ing a new execution path, fuzzers will put it in a queue for further
mutation. In this way, fuzzers will collect more and more interesting
test cases and thus can explore the program’s state space efficiently.
Statistics show that random mutation with feedback-driven works
well inmany software. For example, Google found over 5,000 vulner-
abilities with their feedback-driven mutation-based fuzzer [42, 54].
However, grammar-blind mutation strategies have low effective-
ness in handling structured inputs, like SQL and JavaScript [59].
For example, random flipping the bits of a SQL keyword hardly
produces another valid keyword, and the whole query will become
syntactically incorrect. Figure 1 shows such a case (After mutation),
where flipping the last bit of S in SELECT leads to an invalid keyword
RELECT. The DBMS will reject the new query in the parse phase.

We design evaluation to understand the quality of AFL-generated
SQL queries, and the importance of syntax-correctness and
semantics-correctness. Specifically, we use AFL to test SQLite for
24 hours, which generates 20 million queries. However, only about
30% of them are syntactically correct, and merely 4% for them can
pass semantic checks. We randomly pick 20,000 semantics-correct
queries, and find that they trigger 19,291 distinct code branches
in SQLite. The same number of syntax-incorrect and semantics-
incorrect queries only reach 9,809 and 12,811 branches, respectively.
These results show the low validation rate of AFL-generated queries,

Squirrel

Seed SQL

FuzzingSemantics-Guided
Instantiation

Syntax-Preserving
Mutation

Interesting queries Crashes

IR
Translation

Figure 2: Overviewof Sqirrel. Sqirrel aims to find queries that crash
the DBMS. Sqirrel first lifts queries from SQL to IR; then, it mutates IR to
generate new skeletons; next, it fills the skeleton with concrete operands;
finally, it runs the new query and detects bugs.

and the importance of semantics-correctness for exploring the pro-
gram state space.

2.3 Our Approach

Our idea in this paper is to introduce syntax-correct and semantics-
aware mutation into fuzzing, so we can take advantage of mutation-
based techniques and generation-based mechanisms to maximize
our ability to test DBMSs.
Generating Syntax-Correct Queries. We design a new interme-
diate representation (IR) to maintain SQL queries in a structural
and informative way and adopt type-based mutations to guarantee
the syntactic correctness. Each IR statement simply contains at
most two operands, and therefore our mutation just has to handle
two values. Each statement has an associated grammar type, like
SelectStmt for SELECT statement, while each data has a semantic
type, like table name. Our mutation performs type-based opera-
tions, including inserting type-matched operands, deleting optional
operands and replacing operands with type-matched ones. We strip
the concrete data from each IR, like table names, to focus on mutat-
ing the skeleton. The IR-based mutation effectively preserves the
syntactic correctness. Some generation-based tools generate SQL
queries from the AST. However, due to the strict type-constraint
and complicated operations, mutating AST is as challenging as
modifying SQL queries.
Improving Semantic Correctness. Since ensuring the semantic
correctness of generated SQL queries is proved to be NP-hard [43],
we will try practical solutions to improve the semantic correctness
as much as possible. Existing generation-based tools define a set
of query templates. Each template represents a complete query
and contains specific, static constraints between operands [19].
However, due to the limited human effort, these frameworks cannot
guarantee the expressiveness of their SQL templates. We tackle this
problem through dynamic query instantiation. Given the skeleton
of a syntax-correct SQL query (i.e., without concrete operands),
our method first builds its data dependency graph according to
predefined basic rules. For example, the operand of SELECT can be
a column name of the table used in FROM. Then, we try to fill the
skeleton with concrete operands whose relations satisfy the data
dependency graph. With the instantiation, the semantic correctness
rate is high enough for testing DBMSs.

3 Overview of Sqirrel

Figure 2 shows an overview of our DBMS testing framework,
Sqirrel. Given a set of normal SQL queries, Sqirrel aims to find
queries that render the execution of DBMSs crash. A query means
a test case and may contain multiple SQL statements. Sqirrel
starts with an empty database and requires the query to create
the content. Sqirrel achieves its goal with four key components:

1 // l: left child, r: right child, d: data, t: data type
2 V1 = (Column, l=0, r=0, op=0, d="c2", t=ColumnName);
3 V2 = (ColumnRef, l=V1, r=0, op=0, d=0);
4 V3 = (Expr, l=V2, r=0, op=0, d=0);
5 V4 = (Column, l=0, r=0, op=0, d="c6", t=ColumnName);
6 V5 = (ColumnRef, l=V4, r=0, op=0, d=0);
7 V6 = (Expr, l=V5, r=0, op=0, d=0);
8 V7 = (SelectList, l=V3, r=V6, op=0, d=0);
9 // the optional left child can be DINSTRICT
10 V8 = (SelectClause, l=0, r=V6, op.prefix="SELECT", d=0);
11 ...
12 //Unknown type for intermediate IRs
13 Va = (Unknown, l=V8, r=V14, op=0, d=0);
14 Vb = (Unknown, l=Va, r=V25, op=0, d=0);
15 // the optional right child can be an ORDER clause
16 V26 = (SelectStmt, l=Vb, r=0, op=0, d=0);

Figure 3: IR of the running example SQL query. The corresponding
AST tree is shown in Figure 4.

Translator, Mutator, Instantiator, and SQL Fuzzer. First, Sqirrel
selects one query I from a queue that consists of both initial queries
and saved interesting queries. Second, the Translator translates I
into a vector of IRsV . Meanwhile, the Translator strips the concrete
values from V to make it a query skeleton. Our Mutator modifies
V through insertion, deletion and replacement to produce a new
IR vector V ′ — V ′ is syntactically correct. Next, our Instantiator
performs data dependency analysis of V ′ and builds a data depen-
dency graph. Then, the Instantiator selects new concrete values that
satisfy the data dependency and fillsV ′ with these values. Since the
data dependency is satisfied, V ′ is likely to be semantically correct.
Finally, we convert V ′ back to a SQL query I ′ and run the DBMS
with I ′. If the execution crashes, we find an input that triggers a
bug. Otherwise, if I ′ triggers a new execution path of the program,
we save it into the queue for further mutation.

4 Intermediate Representation

We design an intermediate representation (IR) of SQL to support
the syntax-correct query mutation. We translate each query from
SQL to our IR, mutate the IR and translate the new IR back to SQL
query for execution. Our design of the IR aims to achieve three
goals: the IRs can represent any SQL statements (expressive); the
format and operation of IRs are uniform (general); the translation
between IR and SQL is efficient (simple).

The IR is in the static single assignment (SSA) form. A query, or a
test case, contains one or more IR statements. Each statement is an
assignment, where the left-hand side is the destination variable and
the right-hand side is either a literal or an operator with operands.
We add the following fields in IR to store the necessary information.
• ir_type: the type of one IR statement. This type is based on
the corresponding node in the AST, like column type for column
names or expr type for expressions. We also define a special
type Unknown to represent intermediate statements that have no
corresponding node in the AST.
• operator: consisting of SQL keywords [10] and mathematical
operators [11]. It indicates the operation the IR performs and
includes three parts: the prefix op_prefix, the interfix op_mid
and the suffix op_suffix. For example, the IR of "CREATE trigger
BEGIN list END" has prefix CREATE, interfix BEGIN and suffix END.
• left_operand, right_operand: the operands of the IR operator.
The operand is either another IR statement, or can be NULL if the
operand is optional or not required.
• data_value: the concrete data the IR carries, like table name t1.

selectstmt

selectclause fromclause whereclause

selectlist fromlist expr

expr expr expr expr binaryexpr

columnref columnref table table expr expr

t1 t2column column columnref columnref

c2 c6 table column table column

t1 c1 t2 c5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19 20

21

22

23

24

25

26

Figure 4: AST of the running example. Sqirrel parses the SQL query
and represents it in AST, and finally translate AST to IR.

• data_type: data type, like ColumnName for column names.

We provide the formal definition of the IR grammar in Appendix B.
Figure 3 shows the IRs of our motivating example in Figure 1

(Original query). The corresponding AST is given in Figure 4. V1
and V4 represent the column names c2 and c6, which are corre-
sponding to nodes 1 and 4 in Figure 4. They do not contain any
operator or operand but have the ColumnName data type and proper
data values. V2 and V5 define references to columns (V1 and V4),
and V3 and V6 create two expressions. Each of them only has one
operand. V7 describes the parameter list of SELECT, including c2 and
c6. V8 represents the SELECT clause, which could have DISTINCT as
its left operand (NULL here). SELECT appears before the left operand,
so it is the operator prefix. Since our IR only allows at most two
operands, we have to use two intermediate nodes, Va and Vb, to con-
nect three nodes 8 , 14 and 25 to construct the IR of SelectStmt.
Their ir_types are set to Unknown. Finally, V26 defines the SELECT
statement, which is node 26 in Figure 4.

Our IR is just a sequence of assignment statements. This linear
representation, different from tree or graph structures (like AST),
helps developers to adopt unified and simple mutation strategies.
We can perform statement insertion, deletion and replacement
while keeping the syntactic correctness. We present the algorithms
about translation between SQL queries and IRs in Appendix C.

5 Syntax-Preserving Mutation

We classify tokens in an SQL query into two groups based on their
functionalities. SQL keywords and mathematical operators define
what operations to be performed, and we call these tokens structure.
Other tokens specify the targets of defined operations, and we call
them data. Data can be literal that makes basic sense, like a constant
value 1, or can express semantic meaning, like table names.

We observe that changing structure tokens has more impact
on the DBMS execution than that of changing data tokens. The
difference comes from two reasons. First, altering structure will
change the operations of the query, and thus trigger different
functions, while a DBMS may use the same logic to handle dif-
ferent literal data. For example, SQLite takes almost the same
path to process query A:"SELECT c FROM t WHERE c=1" and query
B:"SELECT c FROM t WHERE c=10", but uses significantly differ-
ent code to handle C:"SELECT c FROM t WHERE c>1". Second, ran-
domly modifying semantic-related data is likely to generate a se-
mantically incorrect query, which a DBMS will refuse to execute.
For example, replacing c in query A with the column in another

SELECT x,x FROM x,x WHERE x.x = x.x;

V8 = (SelectClause, l=0, r=V6, op.prefix="SELECT”…);
Va = (Unknown, l=V8, r=V14, op=0, d=0);
Vb = (Unknown, l=Va, r=V25, op=0, d=0);
V26 = (SelectStatement, l=Vb, r=0, op=0, d=0);

SELECT x,x FROM x,x WHERE x.x = x.x ORDER BY x;

Vc = (OrderbyClause, …);
V26 = (SelectStatement, l=Vb, r=Vc, op=0, d=0);

SELECT count(x,x) FROM x,x WHERE x.x = x.x;

Vc = (CountClause, …);
V8 = (SelectClause, l=0, r=Vc, op.prefix="SELECT”…);

SELECT x,x FROM x,x;

Vb = (Unknown, l=Va, r=0, op=0, d=0);

Insertion

Replacement

Deletion

Figure 5: Mutation strategies on IR programs, including type-based
insertion and replacement, and deletion of optional operands.

table leads to an invalid query. In either case, random data mutation
is less productive than random structure mutation.

Therefore, we strip data from the query IR and apply mutation
mainly on structures. We leave the data modification in §6.

5.1 Structure-Data Separation

We walk through the IRs to replace each data with a predefined
value based on its type data_type. Specifically, we replace semantic
datawith string “x”, change constant numbers to 1 or 1.0 and update
all strings to “a”. Therefore, after the separation, the running ex-
ample “SELECT c2,c6 FROM t1,t2 WHERE t1.c1=t2.c5” becomes
“SELECT x,x FROM x,x, WHERE x.x=x.x”. Both query A and B be-
come "SELECT x FROM x WHERE x=1", while query C is changed to
"SELECT x FROM x WHERE x>1".
Storing IR in Library. We use a dictionary called IR library to
store various IRs. The key of the dictionary is the IR type, while the
value is a list of IRs. IRs in one list have the same type, and their
structures are exclusively different. For example, after separation,
queries A, B, and C have the same SelectStmt type, and they should
be stored in the same list. We remove query B from the list as
it shares the same structure as A. Whenever we need an IR of a
certain type, we find the corresponding list from the dictionary and
randomly return one element. As we show in Figure 2, Sqirrel
accepts seed queries to initialize the IR library. Whenever Sqirrel
finds that the generated IR has a new structure, we add it to the
corresponding list in the library. We set a limit on the maximum
number of IRs in the library to avoid excessive memory usage.

5.2 Type-Based Mutation

We define a set of type-based mutations to update the left and
right operands of an IR or the IR itself. Our mutation focus on
operands as other members of the IR cannot be easily changed: the
operator is closely related to the IR type, like the SELECT operator
in SelectClause IR, while data_type is decided by its position in
the query, like a variable after "CREATE TABLE" must be a table
name. Therefore, our mutations either operate on the whole IR or
modify its operands. Specifically, for each IR v in the IR program
we perform the following mutations with certain probability:
• Insertion adds an IR into an appropriate position of v . If the
left child of v is empty, we randomly pick an IRw from the IR
library that shares the same type as v . If the left child of w is
not empty, we use it as the left child of v . The same operation
applies to the right child.

• Replacement changesv or its operands. We first randomly pick
one IRw of the same type asv from the IR library. Then we copy
the children of w to v , or we can replace v with w and update
all v’s references tow .
• Deletion removes a v as a whole by simply replacing it with an
empty IR. The same operation can be applied to its children.

Since we essentially manipulate IRs based on their types, the syn-
tactic correctness is preserved with a high probability. To further
improve the syntactic correctness, we convert the mutated IRs back
to an SQL query and perform syntax validation with our parser. If
the parsing succeeds, we conclude that this query has no syntax
errors and will use it in the next stage. Otherwise, we discard the
new IRs and try to generate another one.

Figure 5 shows an example of mutating the IRs of our running
example to generate three new queries. Specifically, we insert an
ORDERBY clause to the right child of V26; we replace the right child
of V8 with a CountClause, where the new query counts the rows
of the original results; we delete the right child of Vb to effectively
remove the WHERE clause. All three new IRs are syntactically correct.
UnknownType. Aswemention in §4, some IRs have type Unknown
as they do not have corresponding nodes in the AST. We use
Unknown type to perform fuzzy type-matching without searching
for concrete types, which may accelerate our query generation.
The syntax validation, which always needs one-time parsing, is
unaffected. However, without accurate type-matching, Sqirrel
may create some invalid queries.

6 Semantics-Guided Instantiation

Semantics-correct queries enable fuzzers to dig deeply into DBMSs’
execution logic and discover bugs effectively. However, generating
semantics-correct test cases is an unsolved challenge for fuzzing
programs that take structured, semantics-binding inputs [43]. Pre-
vious research shows that 90% of the test cases generated by js-
funfuzz [47], a state-of-the-art JavaScript fuzzer, are semantically
invalid [34]. Similar problems also exist in DBMS testing.

We propose a data instantiation algorithm to improve the se-
mantic correctness of generated SQL queries. As mentioned in §5,
after mutation the IR program is a syntax-correct skeleton with
data stripped. Our instantiator first analyzes the dependency be-
tween different data, and fill the skeleton with concrete values that
satisfy all dependencies. After the instantiation, the query has a
high chance to be semantically correct.

6.1 Data Dependency Inference

Data dependency describes the relationship between semantic-
binding data. Any unsatisfied dependency will make the query
fail semantic checks. Figure 6 shows the data dependencies among
four SQL statements, including three CREATE statements and our
motivating example. Our syntax-correct mutation has replaced each
variable with x. To distinguish different x, we assign an index to
each of them. These four statements contain two types of relation-
ships: one defines A is an element of B (isAnElement), shown as
gray-dashed lines like x2 is a column of x1; another describes that
A can be B (isA), shown as black-solid lines like x12 can be x1.

We define a set of rules to automatically infer dependencies be-
tween data in the query. These rules follow two principles. The

CREATE TABLE x1 (x2 INT, x3 INT)
CREATE TABLE x4 (x5 INT, x6 INT)
CREATE TABLE x7 (x8 INT, x9 INT)
SELECT x10, x11 FROM x12, x13 WHERE x14.x15 = x16.x17

Data Type Relation

x1, x4, x7 CreateTable

x1 x4 x7

x12 x13

x14 x16

x2,x3 x5,x6 x8,x9

x15

x10,x11

x17

isAnElement

isA

x2, x3 CreateColumn
x5, x6 CreateColumn
x8, x9 CreateColumn
x10, x11 UseFromColumn
x12, x13 UseAnyTable
x14, x16 UseFromTable
x15 UseTableColumn
x17 UseTableColumn

Figure 6: Data dependency example. This example consists of three new
CREATE statements and our running example. In "Relation", we show two
types of relations: "isAnElement" (dashed line) and "isA" (solid line).

lifetime principle requires us to create SQL variables before using
them, and stop using a variable after its deletion. The customization
principle requires us to consider the data types, scopes and opera-
tions to determine the relationship. We need to refine data types
mentioned in §4 to accurately describe data dependencies.
Data Type. We refine each data type so that it not only describes
the semantic meaning but also reflects the usage context. Database
elements in different statements, even with the same basic type, can
have different dependencies. Based on the lifetime principle, we
include the define/use information into the data type, to indicate
whether the element is a new definition or use of an existing one. For
example, a table in a CREATE TABLE clause will have CreateTable
type, while the table in a FROM clause will have UseTable type. Based
on the customization principle, we also include the scope of the data
to show where to find the potential candidate values. For example,
a table in a FROM clause can be any defined table, thus having type
UseAnyTable, while the table in a WHERE clause must be one of the
tables in the FROM clause, thus having the UseFromTable type. The
refined data type of a variable is determined by its position in the
AST. Therefore, Sqirrel identifies and sets the data types during
the query parse and translation.

Figure 6 shows the refined type for each IR data. For example,
x1 is a newly defined table and thus has type CreateTable. x2 and
x3 have type CreateColumn. x12 has type UseAnyTable as it can be
any defined table (x1, x4, x7), while x14 can only be tables listed in
the FROM clause. x10 can be any column of tables in FROM, while x15
can only be the column of table x14.
Data Relation Rule. With refined data types, we can further
define data relation rules that can help automatically infer data
dependencies. A relation rule is a tuple (α , β ,γ , S) of four elements:
α is the relation target and β is the relation source; γ defines the
relationship; S denotes the scope of the relationship, including
intraStmt for relations in the same statement, interStmt for rela-
tions across multiple statements, any for any instance while nearest
for the element with the shortest path according to the Define-Use
chain. We define eight general rules for all DBMSs, one extra rule
for SQLite, two extra rules for MySQL, two extra for MariaDB and
one for PostgreSQL. For example, the relation rule (UseFromTable,
UseTableColumn, isAnElement, nearest) means the data of type
UseTableColumn is an element of the nearest data within the same

One possible relation Data Value

x1 x4 x7

x12 x13

x14 x16

x2,x3 x5,x6 x8,x9

x15

x10

x17

isAnElement

isA
x11

x1, x12, x14 v1
x2, x15 v2
x3, x10 v3

x4, x13, x16 v4
x5, x17 v5
x6, x11 v6
x7 v7
x8 v8
x9 v9

CREATE TABLE v1 (v2 INT, v3 INT)
CREATE TABLE v4 (v5 INT, v6 INT)
CREATE TABLE v7 (v8 INT, v9 INT)
SELECT v3, v6 FROM v1, v4 WHERE v1.v2 = v4.v5

Figure 7: Instantiation of IR structure. We create one concrete depen-
dency graph from the dependencies of Figure 6, replace all place-holder x
and finally get one concrete new query.

statement that has type UseFromTable. In Figure 6, we can infer the
relationship between x15 and x14 with this relation rule.
Dependency Graph. With data types and relations, Sqirrel
automatically constructs a dependency graph G = {V ,E} for each
mutated IR program. Each node in V is an IR data and its data type.
Each edge in E describes one relationship from the edge source
to the target. If a data type potentially depends on two or more
data types, we randomly choose one to avoid circular dependency.
Also, if there are multiple candidate values for the dependent type,
Sqirrel randomly picks one to establish the edge. In this way,
every node in the graph has at most one parent, and the dependency
graph is formed as one tree or several trees. Appendix D includes
more details on the dependency graph construction.

Figure 7 shows one possible dependency graph constructed from
Figure 6. For example, we choose x1 as the dependency of x12,
although it can be any one of (x1, x4, x7) according to Figure 6.
Based on different choices, we can create multiple concrete data
dependency graphs for each mutated IR. There are some details not
shown in the figure, like x10 should be one of x2 and x3. Sqirrel
handles these implicit dependencies properly.

6.2 IR Instantiation

Sqirrel instantiates the query by filling in concrete data. Algo-
rithm 1 shows our instantiation algorithm. For each tree in the
dependency graph, we sort its nodes based on the breadth-first
search and the statement order, which guarantees the lifetime cor-
rectness. For literal data like integers, we set it to a random value
or one from a predefined value set (line 5). For semantic-binding
data, we fill in appropriate, valid names. During the process, we
maintain two maps: dataMap tracks unique names with different
types, while relationMap maps each element to its dependency. If
the current node has no dependency (line 6), it either defines a new
variable, where we create a new unique string as its name (line
7-9), or is a predefined term, like a function name (line 10-13). If the
current node has a parent, we know that it has some dependencies
(line 15-27): if the current node creates a new variable, we simply
generate a unique string for it (line 16-19); if the current node uses
a variable, we check the relationMap to find a proper value for
it (line 22-23). Finally, we translate the IR program back into an
SQL query and return. If the process fails because of unsatisfiable
dependency, the IR program will contain semantic errors.

Algorithm 1: Semantic Instantiation
Input :graph: The dependency graph of the IR program
Output : sqlQuery: A SQL query that can be executed by DBMS. Empty if error

1 Procedure Instantiation(graph)
2 dataMap← map(); relationMap← map();
3 for each tree T ∈ graph do

4 for each node N ∈ T do // in BFS, statement order
5 if N.data is literal then N.data← Random predefined or generated data ;
6 else if N has no parent then
7 if N.datatype is Definition then

8 N.data← GenerateUniqueString();
9 dataMap[N.datatype].insert(N.data) ;

10 else if N.datatype is Use then
// Use before definition

11 if dataMap[N.datatype] is empty then return Null ;
// Some predefine name, like Function name

12 else N.Data← anyone ∈ dataMap[N.datatype] ;
13 else return Null // Delete before definition ;
14 else

15 pN← The parent node of N;
16 if N.datatype is Definition then

17 N.data← GenerateUniqueString();
18 dataMap[N.datatype].insert(N.data) ;
19 relationMap[pN.data].insert(N.data);
20 else if N.datatype is Use then
21 if N.type is the same as pN.type then N.data← pN.data; ;
22 else if relationMap[pN.data] is not empty then

23 N.data← anyone ∈ relationMap[pN.data];
24 else return Null ;
25 else

26 N.Data← pN.data;
27 Delete pN.data from dataMap and relationMap;
28 return sqlQuery← Tranlate the instantiated IR program to a SQL query;

Table 1: Code size of Sqirrel components, totally 43,783 LoC.

Module Translator Mutator Instantiator Fuzzer Others

Language C++/Bison/Flex C++ C++ C++ C++/Make
LoC 32,947 4,572 1,880 2,208 2,176

Figure 7 shows the result of instantiation the in Data and Value
column, and the final SQL query. Sqirrel assigns v1 to x1 as it
is a CreateTable without dependency. Due to the statement order,
we process x2 and x3 next and allocate names v2 and v3 for them,
respectively. We handle x4-x9 in a similar way. For x12, it is with
type UseAnyTable and has a dependency on x1, so based on line 23
of Algorithm 1, we assign x1’s name v1 to x12. Other data can be
instantiated in the same way.

7 Implementation

We implement Sqirrel with 43,783 lines of code. Table 1 shows
the breakdown of different components.
AST parser. We design a general AST parser to handle common
features of different DBMSs, and customize the parser for each
DBMS to support implementation-specific features. Our implemen-
tation is based on Bison 3.3.2 and Flex 2.6.4. The grammar of our
AST parser conforms to the specification described in the official
DBMS documents. We support most grammars in the specification,
but leave alone some parts that are related to administrative func-
tionalities. In this way, we can focus on testing those grammars
related to database manipulation.
Fuzzer. We build Sqirrel on top of AFL 2.56b, and replace its
mutator with our syntax-preserving mutator and semantics-guided
instantiator. When the fuzzer finds an interesting test case, we save
its stripped IRs into the IR library. We drop the database after each
query to minimize the interplay between different queries.
Effort of Adoption. The effort of adopting Sqirrel to other
DBMSs could be DBMS-dependent. First, we should customize

Table 2: Compatibility between fuzzers and DBMSs. MySQL only per-
mits C/S mode, which is not supported by the last three fuzzers. SQLsmith
does not support MySQL’s grammar. QSYM supports fuzzing PostgreSQL in the
single mode, GRIMOIRE cannot compile it, while Angora cannot run it.

S
q

i
r
r
e
l

AF
L

SQ
Ls
mi
th

QS
YM

An
go
ra

GR
IM
OI
RE

SQLite ✔ ✔ ✔ ✔ ✔ ✔
PostgreSQL ✔ ✔ ✔ ✔ (single) ✗ (execute) ✗ (compile)
MySQL ✔ ✔ ✗ (interface) ✗ (C/S) ✗ (C/S) ✗ (C/S)

the general parser to support the unique features of the target
DBMS. Second, we will write semantic relation rules according to
the grammar. Third, if the DBMS runs in client-server mode (e.g.,
MySQL and PostgreSQL), we need to implement a client for it. In our
cases, it took one of our author one day to customize the parser,
and less than six hours to implement the semantic rules and the
client for each DBMS we tested. We believe it should take no more
than two days to adopt Sqirrel to another DBMS.

8 Evaluation

We applied Sqirrel on real-world relational DBMSs to understand
its effectiveness on finding memory error bugs. Specifically, our
evaluation aims to answer the following questions:
• Can Sqirrel detect memory errors from real-world production-
level DBMSs? (§8.1)
• Can Sqirrel outperform state-of-the-art testing tools? (§8.2)
• What are the contributions of language correctness and coverage-
based feedback in DBMS testing? (§8.3)

Benchmarks. We select three widely used DBMSs for extensive
evaluation, including SQLite [4], PostgreSQL [3], MySQL [2]. We
also test MariaDB [1] with Sqirrel just for finding bugs. We com-
pile them with default configurations and compilation options. We
compare Sqirrel with five fuzzers, including the mutation-based
fuzzers AFL [65] and Angora [25], the hybrid fuzzer QSYM [64], the
structural fuzzer GRIMOIRE [20] and the generation-based fuzzer
SQLsmith [5]. We try to run as many tests as possible, but as shown
in Table 2, we encounter several compatibility issues. As MySQL
requires a client to send the query (i.e., C/S mode), QSYM, Angora
and GRIMOIRE cannot test it directly. SQLsmith does not officially
support MySQL due to the lack of interfaces [13]. PostgreSQL sup-
ports both C/S mode and single mode, and we can use QSYM to test it
in the single mode. However, GRIMOIRE cannot compile PostgreSQL
successfully to a single static binary; Angora can compile it but
cannot run the binary. We are actively seeking potential solutions.
Seed Corpus. We collect seed inputs from the official Github
repository of each DBMS, where the unit tests usually cover most
types of queries. We feed the same seeds to all the six fuzzers in our
evaluation except SQLsmith which does not need any initial inputs.
Setup. We perform our evaluation in a Ubuntu 16.04 system, on
a machine that has Intel Xeon CPU E5-2690 (2.90GHz) with 16
cores and 188GB RAM. We use afl-clang with llvm mode to in-
strument tested DBMSs, and adopt edge-coverage for the feedback.
Considering the large codebase of DBMSs, we use a bitmap with
256K bytes to mitigate the path collision issue [30]. Angora uses a
1024K-byte bitmap, the default size by design. For bug detection,

CREATE TABLE v0 (v1);

CREATE TABLE v2 (v3);

CREATE TRIGGER r1 AFTER INSERT ON v0 BEGIN INSERT INTO v0 (v1)
VALUES (99); END;

CREATE TABLE v2 (v3 PRIMARY KEY NOT NULL) ;
CREATE VIEW v2 AS SELECT v1+9, v1+3 FROM v0;

CREATE VIEW v2 AS SELECT DISTINCT v1+3, v1+9 FROM v0;
CREATE VIEW v2 AS SELECT * FROM v0 WHERE v1
IN (SELECT * FROM v0 ORDER BY v1);

CREATE VIEW v2 AS SELECT * FROM v0 WHERE v1
IN (SELECT DISTINCT * FROM v0 ORDER BY v1);

SELECT * FROM v0;
SELECT DISTINCT * FROM v0;

SELECT DISTINCT * FROM v0 NATURAL JOIN v2;

T1 T8T7T6T5T4T3T2 Fuzzing Mutations

Or
ig

in
al

 Q
ue

ry

Bu
g-

tr
ig

ge
rin

g
 Q

ue
ry

By replacement
By insertion

Figure 8: Mutations to trigger the 11-year old bug. Sqirrel takes
eight steps, including four insertions and four replacements to produce the
bug-triggering query from the original one.

due to the time limit and the implementation progress, we have
run Sqirrel to test SQLite for 40 days, MySQL and PostgreSQL for
11 days, and MariaDB for 1 day. For other evaluations, we run each
fuzzing instance (fuzzer+DBMS) for 24 hours and repeat the process
five times. Each fuzzing instance runs separately in a docker with
one CPU and 10G memory. We report the average results to reduce
the random noise and provide the p-values in Table 6 of Appendix.

8.1 DBMS Bugs

Sqirrel has successfully detected 63 bugs from tested DBMSs,
including 51 bugs from SQLite, 7 from MySQL, and 5 from MariaDB.
Table 5 in Appendix shows the details of the identified bugs. We
have responsibly reported all the bugs to corresponding DBMS
developers and have received their positive feedback. At the time
of paper writing, 52 bugs have been fixed, and 12 got CVE numbers
due to the severe security consequences. As a comparison, the OSS-
Fuzzer project launched by Google [33] have extensively tested the
first thee DBMSs, and found 19 bugs from SQLite in three years,
15 bugs from MySQL in four months and no bugs from PostgreSQL.
We inspect the MySQL bugs detected by OSS-Fuzzer and find that all
of them happen at the very beginning of MySQL’s logic: before the
parsing phase. The proof-of-concepts (PoC) are not even valid SQL
queries but just some random bits. Therefore, we believe our fuzzer
can find bugs from DBMSs more effectively. We plan to integrate
our tool into OSS-Fuzzer to improve the security of DBMSs.
Bug Diversity. The 63 bugs in Table 5 in Appendix cover almost
all common types of memory errors, showing that Sqirrel can
improve DBMS security from a variety of aspects. In particular,
buffer overflows and use-after-free bugs are commonly believed to
be exploitable, whereas Sqirrel found 12 bugs and 2 bugs, respec-
tively. Sqirrel also detected 33 assertion failures from SQLite,
which indicate that the executions reach unexpected states. Even
worse, assertion checks are disabled in the released binary, which
may lead to severe security problems. For example, in case study 3,
an assertion failure results in a severe use-after-free vulnerability.
Case Study 1: An 11-Year-Old Bug. Sqirrel detected a bug
introduced to SQLite 11 years ago (ID 16 in Table 5 in Appendix,
PoC in Listing 1 of Appendix), which lies in an optimization routine
of the IN clause. Specifically, isCandidateForInOpt checks various
conditions to determine whether the subquery inside the IN clause
can be optimized or not. One of these checks should make sure the
subquery does not have any GROUP BY clause. As the SQL grammar

does not allow GROUP BY in an IN clause, the developers “were
unable to find a test case for”1 this condition, and thus converted the
check “into an assert() by check-in [...] (2009-05-28)”. The assertion
is disabled in the released version of SQLite. Sqirrel found that if
two queries with DISTINCT are joined by NATURAL JOIN, SQLitewill
internally set the GROUP BY property to these queries. When such
queries are used in an IN clause, it will make the previous assertion
fail. However, the released SQLite will continue the optimization
incorrectly, and may lead to wrong query results.

Sqirrel found this 11-year-old bug within 14 minutes through
only eight mutations. Figure 8 shows the eight steps for Sqirrel
to generate the bug-triggering query from a benign one. We denote
Tn as the nth mutation. The original query contains three CREATE
statements: the first CREATE does not have to change; the second
CREATE is changed five times with three insertions (T1, T5 and T8)
and two replacements (T4 and T7); the last CREATE is changed three
times with two replacements (T2 and T6) and one insertion (T3).
Each round of mutation provides a new syntactical structure, and
keeps both syntactical and semantic correctness. The final query
satisfies the conditions for failing the assertion, as SQLite will put
the last SELECT into the IN of the second statement, which makes
the subquery of IN contain two naturally joined SELECTs.
Case Study 2: Database Leakage. Sqirrel identified a heap-
based buffer overread vulnerability (ID 5 in Table 5 in Appendix,
PoC in Listing 2 of Appendix), which allows attackers to read ar-
bitrary data in the memory space. This bug entitles attackers to
potentially access all databases stored in the SQLite DBMS. As
SQLite is widely used as a multi-user service, attackers can retrieve
the data of other users, which by default they have no access. Even
if the database is explicitly deleted by its owner, attackers can still
steal it from its memory residue. Other than stealing databases,
this bug also enables attackers to read sensitive-critical information
that may allow attackers to build further attacks, like remote code
execution. For example, reading the code page address will help
attackers bypass randomization-based defenses, while leaking the
stack canary will make stack buffer-overflow exploitable again.
Case Study 3: Assertion Failure Leading to Use-After-Free.

We inspected several assertion failures and found one (ID 3 in
Table 5 in Appendix, PoC in Listing 3 of Appendix) finally leads
to a high-severity use-after-free bug (score 7.5/10). An assertion
affirms that a predicate is always true whenever the execution
reaches the assertion point. Otherwise, the developer considers the
program running into an unexpected state. This bug makes SQLite
fail a pParse->pWith assertion, as pWith is a dangling pointer due
to a failed creation of a circular view. In the debug mode, SQLite
will terminate the execution after the assertion failure. However,
the released binary disables all assertions. Given the bug-triggering
input, SQLite will keep running in the unexpected state and finally
trigger the use-after-free bug.
Case Study 4: Fuzzing as Regression Test. Sqirrel can effec-
tively find newly-introduced bugs, and thus can be used for rapid
regression test. For example, the bug with ID 35 in Table 5 in Ap-
pendix (PoC in Listing 4 of Appendix) only exists for less than one
day before we found it. The bug with ID 38 (PoC in Listing 5 of
Appendix) got detected, reported and even fixed in just one hour
1Quote from the message of the fix commit.

0 4 8 12 16 20 24
0

120

240

360

480

600

cr
as

h
nu

m
b

er

(a) SQLite crashes

0 4 8 12 16 20 24
0

2

4

6

8

bu
g

nu
m

b
er

(b) SQLite bugs

0 4 8 12 16 20 24
0

8

16

24

32

ne
w

ed
ge

s
(K

)

(c) SQLite new edges
0 4 8 12 16 20 24

0

20

40

60

80

100

sy
nt

ax
va

lid
(%

)

(d) SQLite syntax
0 4 8 12 16 20 24

0

10

20

30

40

50

se
m

an
ti

c
va

lid
(%

)

(e) SQLite semantic

0 4 8 12 16 20 24
0

4

8

12

16

20

ne
w

ed
ge

s
(K

)

(f) PostgreSQL new edges
0 4 8 12 16 20 24

0

20

40

60

80

100

sy
nt

ax
va

lid
(%

)

(g) PostgreSQL syntax
0 4 8 12 16 20 24

0

4

8

12

se
m

an
ti

c
va

lid
(%

)

(h) PostgreSQL semantic

0 4 8 12 16 20 24
0

4

8

12

ne
w

ed
ge

s
(K

)

(i) MySQL new edges
0 4 8 12 16 20 24

0

14

28

42

56

70

sy
nt

ax
va

lid
(%

)
(j) MySQL syntax

0 4 8 12 16 20 24
0

4

8

12

16

20

se
m

an
ti

c
va

lid
(%

)

(k) MySQL semantic

Figure 9: Comparison with existing tools. Figures (a) and (b) show the numbers of unique crashes and the numbers of unique bugs for fuzzing SQLite.
Figures (c)-(k) show the number of new edges, the syntax correctness and the semantic correctness for each fuzzing instance. We run each fuzzing instance for
24 hours, repeat each fuzzing for five times and report the average results.

Table 3: Distribution of SQLite bugs found by fuzzers.We perform the
evaluation for 24 hours, repeat for 5 times and report the average results.
We update SQLite binary per-hour to fix identified bugs. † ID in Table 5.

Target ID† Type S
q

i
r
r
e
l

AF
L

SQ
Ls
mi
th

QS
YM

An
go
ra

GR
IM
OI
RE

!
s
e
m
a
n
t
i
c

!
f
e
e
d
b
a
c
k

SQLite 2 NULL Ptr Deref ✔ ✔ ✗ ✔ ✗ ✗ ✔ ✔
SQLite 3 Use-After-Free ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 4 Buffer Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 5 Buffer Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 6 NULL Ptr Deref ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 9 Stack Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 10 NULL Ptr Deref ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 11 NULL Ptr Deref ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SQLite 14 Buffer Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

after its existence. The commit introducing this bug was intended
to fix another issue related to the generated column functionality.
However, the fix was not completely correct and thus introduced
a new problem in the USING clause. These two cases show that
Sqirrel can do fast and effective regression testing for DBMSs.

8.2 Comparison with Existing Tools

We compare Sqirrel with five state-of-the-art fuzzers in different
aspects to understand its strength and weakness in testing DBMSs.
Figure 9 shows our evaluation results, including the number of
unique crashes, the number of unique bugs, the number of new
edges, the syntax correctness and the semantic correctness. The
p-values of our evaluations are shown in Table 6 in the Appendix.
Most of the p-values are less than 0.05, which means the differences
between Sqirrel’s results and others’ are statistically significant.
We will discuss exceptional high p-values case by case.

Unique Crashes. We utilize the edge-coverage map to calculate
the number of unique crashes, and show the results of fuzzing
SQLite in Figure 9(a). We exclude the results of PostgreSQL and
MySQL as only Sqirrel finds few crashes in MySQL, and none of the
other fuzzing instances find any crashes within 24 hours. Sqirrel
detects the first crash of SQLite within four minutes, and totally
detects about 600 unique ones. AFL catches the first crash in 32
minutes and gets 30 unique ones in total, while QSYM discovers
the first one in 14 minutes and finally collects 13 crashes. Angora,
GRIMOIRE and SQLsmith cannot find any crashes.

As we can see, recent advanced fuzzing tools do not significantly
outperform AFL. In some cases, they may even find fewer unique
crashes. We believe such result is reasonable due to the indetermin-
istic characteristic of fuzzing and the strict semantic requirements
for testing DBMS systems.
Unique Bugs. We map each crash to the corresponding bug based
on the official patches. In SQLite, the 600 crashes found by Sqirrel
only belong to two bugs, while the 30 crashes detected by AFL and
the 13 found by QSYM belong to the same one bug. Since the small
number of bugs is not statistically useful, we take a different strategy
to get more bugs: after every hour, we check the detected crashes (if
any), map them to real bugs and patch them to avoid future similar
crashes. We show the result of the new strategy in Figure 9(b). This
method is effective for Sqirrel to find more bugs (from two to
nine), as after each patching, Sqirrel can almost immediately find
one more new bug. AFL and QSYM can only find one bug within one
hour, and have no progress even with the patching. Table 3 shows
the distribution of detected bugs, where the only bug found by AFL
and QSYM is also covered by Sqirrel.

New Edges. Sqirrel identifies 2.0×-10.9× more new edges than
mutation-based tools, and achieves a comparable result to the
generation-based tester SQLsmith. Figure 9(c), (f) and (i) show the
increase of new edges of SQLite (S), PostgreSQL (P) and MySQL (M),
respectively. Sqirrel outperforms other fuzzers in eight compar-
isons out of nine: it collects 6.6× (S), 4.4× (P) and 2.0× (M) more new
edges than AFL, 7.7× (S) more than SQLsmith, 3.6× (S) and 10.9×
(P) more than QSYM, 2.3× (S) more than Angora, and 3.3× (S) more
than GRIMOIRE. The only exception comes from fuzzing PostgreSQL
with SQLsmith, where Sqirrel collects 89.3% new edges of that
by SQLsmith. This is not a surprise considering that SQLsmith is
designed to handle the specific grammar of PostgreSQL. Since
SQLsmith performs slightly better than Sqirrel on PostgreSQL,
the related p-value in Table 6 is larger than 0.05.
Syntax Validity. Sqirrel achieves 1.8×-20.9× higher syntax cor-
rectness than mutation-based tools, and gets a comparable result
to SQLsmith. Figure 9(d), (g) and (j) show the change of syntactic
validity during testing SQLite (S), PostgreSQL (P) and MySQL (M), re-
spectively. Sqirrel achieves 1.8× (S), 11.5× (P) and 2.5× (M) higher
syntax correctness than AFL, 6.1× (S) higher than SQLsmith, 2.4×
(S) and 20.9× (P) higher than QSYM, 2.8× (S) higher than Angora, and
2.9× (S) higher than GRIMOIRE. The exception comes from fuzzing
PostgreSQL with SQLsmith, where Sqirrel achieves 97.1% syn-
tactic validity of that by SQLsmith. Again, we believe the reason
is that SQLsmith is highly customized for the specific grammar of
PostgreSQL. For example, SQLsmith only achieves 12.7% syntax cor-
rectness in fuzzing SQLite, while gets almost 100% syntax accuracy
when fuzzing PostgreSQL. The p-value of Sqirrel vs SQLsmith on
PostgreSQL is more than 0.05 due to the similar results.
Semantic Validity. Sqirrel achieves 2.4×-243.9× higher seman-
tic correctness than other tools. Figure 9(e), (h) and (k) show the
trend of semantic validity during testing SQLite (S), PostgreSQL
(P) and MySQL (M), respectively. Sqirrel achieves 8.3× (S), 7.0×
(P) and 27.0× (M) higher semantic correctness than AFL, 125.4× (S)
and 243.9× (P) higher than SQLsmith, 8.8× (S) and 4.7× (P) higher
than QSYM, 8.3× (S) higher than Angora, and 2.4× (S) higher than
GRIMOIRE. Interestingly, although SQLsmith performs slightly bet-
ter on testing PostgreSQL with respect to new edges and syntax
correctness, Sqirrel achieves significantly higher accuracy on
semantics. Another worth-noting observation is that AFL actually
generates more correct inputs for PostgreSQL than Sqirrel (2.2×,
see Table 7 in Appendix), but still achieves lower edge coverage.
This indicates that larger numbers of correct queries or higher cor-
rect rate cannot guarantee to explore more program states. One
extreme example is to keep using the same correct query, which
will have more executions (no generation overhead) and 100% cor-
rectness. But apparently, it will lead to no increase in code coverage.
The strength of Sqirrel stems from both the syntax-preserved
mutation, which generates queries of various structures, and the
semantics-guided instantiation, which infers semantic relationships
between arguments to assist query synthesis.

Sqirrel outperforms all mutation-based tools, even if they are
augmented with taint analysis or symbolic execution, or consider
structural information. It achieves comparable results to SQLsmith,
which is customized for PostgreSQL. More importantly, Sqirrel
detects significantly more bugs than other tools.

8.3 Contributions of Validity and Feedback

To understand the contribution of different factors in Sqirrel,
specifically, syntax-preserving mutation, semantic-guided instanti-
ation and coverage-based feedback, we perform unit tests by dis-
abling each factor and measure various aspects of the fuzzing pro-
cess. The results are given in Figure 10. In Sqirrel!semantic , we only
disable the semantics-guided instantiation; in Sqirrel!feedback ,
we only disable the coverage-based feedback; Sqirrel!syntax!semantic
disables both the semantics-guided instantiation and the syntax-
correct mutation, and is in fact the same as AFL. Since our semantics-
guided instantiation requires syntax-correct queries, we cannot
create a version that only disables the mutation. We also exclude
the all-disabled setting, which will be the dumb mode of AFL.

The p-values of our evaluations are shown in Table 6. Most p-
values are less than 0.05, showing that the differences between
Sqirrel’s results and others’ are statistically significant. We will
explain exceptional p-values higher than 0.05.
UniqueCrashes. Figure 10(a) shows the number of unique crashes
found in SQLite by each setting. Similarly, we skip the results of
PostgreSQL and MySQL due to the small number of crashes dur-
ing the 24-hour evaluation. The full-featured Sqirrel achieves
the best results. First, Sqirrel finds the first crash within four
minutes. Sqirrel!semantic takes 60× more time to detect the first
crash (261 minutes). Interestingly, Sqirrel!syntax!semantic finds the first
crash within 32 minutes — worse than Sqirrel, but better than
Sqirrel!semantic . Considering that the latter runs 220 queries per
second while the former can execute 507 (i.e., 1.3× faster), we
believe the advantage of Sqirrel!syntax!semantic over Sqirrel!semantic
mainly comes from the faster generation speed. Sqirrel!feedback
takes 700 minutes to find the first crash. The total number
of unique crashes follows the same pattern, where Sqirrel,
Sqirrel!semantic , Sqirrel!syntax!semantic and Sqirrel!feedback detect
600, 30, 10 and 3 crashes, respectively. The results above show
that all three factors of Sqirrel contribute critically to the crash
detection. Further, coverage-based feedback plays the most impor-
tant role, while syntax-only testing cannot beat AFL.
Unique Bugs. We take the same strategy to measure the unique
bugs, where we patch the detected bug after each hour. Figure 10(b)
shows the results. The full-featured Sqirrel finds nine unique
bugs, while other variants only detect one unique bug. As shown in
Table 3, the only bug found by Sqirrel variants (!feedback and
!semantic) is also covered by the full-featured version.
New Edges. Figure 10(c), (f) and (i) demonstrate an (almost)
consistent pattern of finding new edges for SQLite, PostgreSQL
and MySQL: Sqirrel > Sqirrel!semantic > Sqirrel!syntax!semantic
>Sqirrel!feedback . The coverage-based feedback helps achieve
2.0× more new edges for fuzzing SQLite, PostgreSQL and MySQL.
Syntax-correctness helps find 1.0×-1.5×more edges than AFL, while
semantic correctness further improves the number by 0.3×-1.7×.
This result shows that improving the syntax-correctness or seman-
tic correctness helps reach more DBMS states.
Syntax Validity and Semantic Validity. Figure 10(d), (g) and (j)
show the syntax changes during the tests of three DBMSs, while
Figure 10(e), (h) and (k) show the semantic changes. In most cases,
Sqirrel achieves the best validity while AFL reaches the worst.

0 4 8 12 16 20 24
0

120

240

360

480

600

cr
as

h
nu

m
b

er

(a) SQLite crashes

0 4 8 12 16 20 24
0

2

4

6

8

bu
g

nu
m

b
er

(b) SQLite bugs

0 4 8 12 16 20 24
0

8

16

24

32

ne
w

ed
ge

s
(K

)

(c) SQLite new edges
0 4 8 12 16 20 24

0

20

40

60

80

100

sy
nt

ax
va

lid
(%

)

(d) SQLite syntax
0 4 8 12 16 20 24

0

8

16

24

32

40

se
m

an
ti

c
va

lid
(%

)

(e) SQLite semantic

0 4 8 12 16 20 24
0

4

8

12

16

ne
w

ed
ge

s
(K

)

(f) PostgreSQL new edges
0 4 8 12 16 20 24

0

20

40

60

80

100

sy
nt

ax
va

lid
(%

)

(g) PostgreSQL syntax
0 4 8 12 16 20 24

0

6

12

18

24

se
m

an
ti

c
va

lid
(%

)

(h) PostgreSQL semantic

0 4 8 12 16 20 24
0

4

8

12

ne
w

ed
ge

s
(K

)

(i) MySQL new edges
0 4 8 12 16 20 24

0

20

40

60

80

100

sy
nt

ax
va

lid
(%

)
(j) MySQL syntax

0 4 8 12 16 20 24
0

4

8

12

16

20

se
m

an
ti

c
va

lid
(%

)

(k) MySQL semantic

Figure 10: Contributions of Validity and Feedback. Figures (a) and (b) show the numbers of unique crashes and the numbers of unique bugs for fuzzing
SQLite. Figures (c)-(k) show the number of new edges, the syntax correctness and the semantic correctness for each fuzzing instance. We run each fuzzing
instance for 24 hours, repeat each fuzzing for five times and report the average results.

This result is reasonable as we design Sqirrel to get better lan-
guage validity while AFL randomly mutates SQL queries. However,
we can find some interesting anomalies from the figures. First,
Sqirrel!semantic achieves similar syntax accuracy as Sqirrel in
Figure 10(d) and (g), which shows that improving semantic correct-
ness will not increase syntax correctness. In fact, the instantiation
may decrease the syntax correctness, like in Figure 10(j), as it tends
to remove short queries. Short queries are more likely syntactically
correct, but our instantiator cannot fix their semantics. For exam-
ple, SELECT a FROM b is semantically incorrect as no table b exists.
As SQLsmith performs similarly or even better than Sqirrel, the
p-values for PostgreSQL and MySQL are larger than 0.05.

Second, in Figure 10(j) Sqirrel!feedback has the similar semantic
correctness as Sqirrel. This result seems to suggest that feedback
has no impact on MySQL’s semantic correctness. However, further
inspection reveals that Sqirrel!feedback produces very divergent
semantic correctness: among five experiments, two achieve high
correctness over 40%, while the other three have a low rate be-
low 10%. We find that the initial seeds in MySQL are smaller than
those in SQLite and PostgreSQL. These small seeds might induce
Sqirrel!feedback to keep producing correct but simple and repeated
inputs for MySQL. Due to the randomness of MySQL results, the p-
values in Table 6 of Appendix are larger than 0.05. However, Fig-
ure 10(i) shows that the queries generated by Sqirrel are more
diverse in structures than those of Sqirrel!feedback , as Sqirrel
finds much more execution paths with similar semantic correctness.

Overall, syntax, semantics and feedback play critical roles in
Sqirrel to find more memory errors from DBMSs. The coverage-
based feedback has the most impact, while syntactic correctness

and semantic correctness have mixed influences. The final result is
an interplay between all three factors.

9 Discussion

We discuss several limitations of our current implementation of
Sqirrel and our plan to address them in future work.
DBMS-Specific Logic. Although our design of Sqirrel is DBMS-
agnostic, we find that utilizing program-specific features improves
testing result. First, each DBMS implements a dialect of SQL, which
is either almost the same as the official one, like SQLite [4], or
significantly different in many features, like PostgreSQL [3]. Due
to this reason, Sqirrel works well on SQLite (51 bugs), but only
triggers few bugs in PostgreSQL, MySQL and MariaDB. We plan to
implement more accurate grammar of different SQL dialects to im-
prove our fuzzing efficacy. Second, DBMSs may adopt extra checks
before executing the query. For example, we find that PostgreSQL
requires type correctness between all operands, and comparisons
between integers and floating points are not allowed. SQLite does
not check anything but will automatically perform type-casting
during the execution, while MySQL only gives a warning for mis-
matched types. We plan to implement the type consistency relation
in our semantics-guided instantiation for testing PostgreSQL.
Relation-Rule Construction. Sqirrel relies on relation rules
to infer data dependencies between different operands. Currently,
we write the relation rules based on our domain knowledge. We
have two of our authors spend two hours to write these rules, which
merely covers 133 clauses. To automate this process, we plan to
adopt techniques to automatically infer these rules. For example,
with data-flow analysis, we can figure out the expected relationship
between each operand. Alternatively, we can try machine learning

techniques to automatically capture the relationship from a large
number of normal executions.
Collisions in Code-Coverage. Sqirrel relies on the feedback
mechanism of AFL to guide the query selection, which unfortunately
suffers from the collision issue [30]. By default, AFL uses a bitmap
with 64K entries to record the branch coverage, one for each branch.
For small programs with few branches, this method works very well.
However, DBMSs contain tens of thousands of branches and thus
testing DBMSs with AFL has a severe collision problem. For example,
SQLite has about 20,000 distinct branches, and 14% of them share
the bitmap entries with others [66]. During our evaluation, we
enlarge the bitmap to 256K to mitigate the collision issue. In the
next step, we plan to adopt the solution proposed in the CollAFL
to eliminate the collision problem [30].
Alternative Feedback Mechanisms. Recent software testing
practice widely adopts code coverage to guide mutation-based
fuzzing [21, 32, 42, 53, 65]. However, during our evaluation, we
find potential harmful code coverage that hinders the generation
of semantics-correct queries. Especially, at the beginning of test-
ing grammar-incorrect queries trigger many new branches in the
fault-handling code. The coverage-based feedback guides Sqirrel
to focus on these inputs instead of the original semantics-correct
queries. Recent works for fuzzing language compilers and inter-
preters mention a similar observation [34, 61]. We plan to investi-
gate this problem and develop solutions to mitigate it, like dropping
inputs that trigger new branches in short executions.

10 Related Work

Detecting Logic and Performance Bugs in DBMSs. DBMSs
have been heavily tested for logic and performance defects [52, 55,
60, 63]. RAGS detects correctness bugs in DBMS through differ-
ential testing [55]. It generates and executes queries in multiple
DBMSs. Any inconsistency among results indicates at least one
DBMS contains bugs. SQLancer constructs queries to fetch a ran-
domly selected row from a table [52]. The tested DBMSmay contain
a bug if it fails to fetch the row. QTune [40] is a database tuning
system based on a deep reinforcement learning model, which can ef-
ficiently tune the database configurations for the best performance.
Apollo uses differential testing to find performance bugs [36]. It
generates and runs queries in two versions of the same DBMS. If
two executions take significantly different times, the query triggers
a performance regression bug. BmPad runs predefined test suites
in the target DBMS, and reports performance bugs if the execution
time exceeds the threshold [51]. Sqirrel differs from these works
by focusing on detecting memory corruption bugs, which can cause
severe security consequences.
Generation-based DBMS Testing. Generation-based testing is
commonly used to test DBMSs [5, 46, 58]. It can generate syntax-
correct test cases efficiently but seldom guarantees the semantic
correctness. QAGen shows that ensuring perfect semantic correct-
ness is an NP-complete problem [43]. Instead, it provides an approx-
imate solution to improve the semantic correctness. Several works
reduce the generation to the SAT problem [14, 44] and use an SAT
solver (e.g., Alloy [16]) to provide potential solutions. Generation-
based fuzzers usually require the schema of some initial databases
for query generation. Bikash Chandra et al. [24] proposed a way

to generate initial databases that can cover most types of SQL
queries. SQLsmith is the state-of-the-art generation-based DBMS
tester [5]. It collects the schemas from the initial databases and
generates limited types of queries, like SELECT, to ensure that the
database is unchanged, which restricts the code coverage. In con-
trast, Sqirrel generates context-free test cases and does not rely
on specific databases or schemas. It starts with an empty database
and creates proper content before using them for testing.
Mutation-based DBMS Testing. Recently, mutation-based
fuzzers [18, 22, 25, 26, 31, 39, 42, 56, 64, 65] have gained great suc-
cess in finding memory errors. However, they are implemented as
general fuzzers and are unaware of the structure of inputs. Though
some of them adopt advanced techniques such as taint analysis
or symbolic execution [18, 25, 64], they still cannot deeply test
programs like DBMSs that accept highly structural inputs with
correct semantics. Tim Blazytko et al. [20] proposed a way to uti-
lize grammar-like combinations to synthesize highly structured
inputs, but most of its generated test cases in SQL are still syntac-
tically incorrect. Hardik Bati et al. [19] proposed to mutate SQL
statements by adding or removing grammar components. They can
likely preserve the syntactical correctness, but cannot guarantee the
semantic correctness. Recent works [17, 49] tend to improve seman-
tic correctness of the generated inputs, but SQL has more restrict
semantic requirements and none of them show their effectiveness
in testing DBMSs. Therefore, most test cases generated by these
fuzzers fail either the syntax check or semantic check and have
no chance to trigger deep logics, like optimization or execution.
Sqirrel overcomes these shortcomings with syntax-preserving
mutation and semantic-guided instantiation and manages to detect
bugs behind the deep logic.

11 Conclusion

Wehave proposed and implemented Sqirrel to fuzz databaseman-
agement systems to find memory-related bugs. Our system employs
two novel techniques, syntax-preserving mutation and semantics-
guided instantiation, to help generate correct SQL queries. We eval-
uated Sqirrel on four popular DBMSs: SQLite, MySQL, MariaDB
and PostgreSQL, and found 51 bugs in SQLite, 7 in MySQL and 5
in MariaDB. Sqirrel achieves at least 3.4 times of improvement
in semantic correctness than that of current mutation-based and
generation-based fuzzers, and triggers up to 12 times of improve-
ment in code coverage than current mutation-based fuzzers. The
results show that Sqirrel is effective and efficient in testing data-
base management systems.

Acknowledgment

We thank the anonymous reviewers for their helpful feedback. The
work was supported in part by the National Science Foundation
(NSF) under grant CNS-1652790, and the Office of Naval Research
(ONR) under grants N00014-16-1-2912, N00014-16-1-2265, N00014-
17-1-2894, N00014-17-1-2895 and N00014-18-1-2662. Any opinions,
findings, conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of NSF or ONR.

References

[1] MariaDB. https://www.mariadb.org/.
[2] MySQL. https://www.mysql.com/.
[3] PostgreSQL. https://www.postgresql.org/.
[4] SQLite. https://www.sqlite.org/index.html.
[5] SQLSmith. https://github.com/anse1/sqlsmith, 2016.
[6] Processing a SQL Statement. https://docs.microsoft.com/en-us/sql/odbc/

reference/processing-a-sql-statement?view=sql-server-ver15, 2017.
[7] Yahoo Says All Three Billion Accounts Hacked in 2013 Data Theft.

https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-
billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1, October 2017.

[8] MySQL Customers. https://www.mysql.com/customers/, 2020.
[9] PostgreSQL Clients. https://wiki.postgresql.org/wiki/PostgreSQL_Clients, 2020.
[10] SQL Keywords Reference. https://www.w3schools.com/sql/sql_ref_keywords.

asp, 2020.
[11] SQL Operators. https://www.w3schools.com/sql/sql_operators.asp, 2020.
[12] Well-Known Users of SQLite. https://www.sqlite.org/famous.html, 2020.
[13] SQLsmith Description. https://github.com/anse1/sqlsmith#description, 2020.
[14] S. Abdul Khalek and S. Khurshid. Automated SQL Query Generation for System-

atic Testing of Database Engines. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE10, 2010.

[15] B. Acohido. Small Banks and Credit Union Attack Set for Tues-
day. https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-
service-small-business-cybersecurity-privacy/2139349/, May 2013.

[16] Alloy. Alloy - Documentation of Alloy SAT solver, 2019. https://alloytools.org/
documentation.html.

[17] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert.
Nautilus: Fishing for deep bugs with grammars. In NDSS, 2019.

[18] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz. Redqueen:
Fuzzing with input-to-state correspondence. In Symposium on Network and
Distributed System Security (NDSS), 2019.

[19] H. Bati, L. Giakoumakis, S. Herbert, and A. Surna. A Genetic Approach for
Random Testing of Database Systems. In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB07, pages 1243–1251, 2007.

[20] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo, S. Wörner, and
T. Holz. GRIMOIRE: Synthesizing structure while fuzzing. In USENIX Security
Symposium, 2019.

[21] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based Greybox Fuzzing
As Markov Chain. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[22] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed greybox
fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2329–2344, 2017.

[23] E. V. Buskirk. Facebook Confirms Denial-of-Service Attack. https://www.
wired.com/2009/08/facebook-apparently-attacked-in-addition-to-twitter/, Au-
gust 2009.

[24] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and S. Sudarshan. Data
generation for testing and grading sql queries. The VLDB Journal, 24(6):731âĂŞ755,
Aug 2015. ISSN 0949-877X. doi: 10.1007/s00778-015-0395-0. URL http://dx.doi.
org/10.1007/s00778-015-0395-0.

[25] P. Chen and H. Chen. Angora: Efficient Fuzzing By Principled Search. In Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[26] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, L. Lu, et al. Savior: Towards
bug-driven hybrid testing. In Proceedings of the 41th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2020.

[27] C. Cimpanu. Google Chrome Impacted by New Magellan 2.0 Vulner-
abilities. https://www.zdnet.com/article/google-chrome-impacted-by-new-
magellan-2-0-vulnerabilities/, December 2019.

[28] U.M. Fayyad. Data Science Revealed: AData-Driven Glimpse into the Burgeoning
New Field. https://fayyad.com/data-science-revealed-a-data-driven-glimpse-
into-the-burgeoning-new-field/, 2011.

[29] L. Franceschi-Bicchierai. Hacker Tries To Sell 427 Milllion Stolen MySpace
Passwords For $2,800. https://www.vice.com/en_us/article/pgkk8v/427-million-
myspace-passwords-emails-data-breach, May 2016.

[30] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. CollAFL: Path Sensitive
Fuzzing. In Proceedings of the 39th IEEE Symposium on Security and Privacy

(Oakland), San Francisco, CA, May 2018.
[31] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen. GREYONE: Data

Flow Sensitive Fuzzing. In Proceedings of the 29th USENIX Security Symposium
(Security), BOSTON, MA, Aug. 2020.

[32] Google. Honggfuzz, 2016. https://google.github.io/honggfuzz/.
[33] Google. OSS-Fuzz - Continuous Fuzzing For Open Source Software. https:

//github.com/google/oss-fuzz, 2018.
[34] H. Han, D. Oh, and S. K. Cha. Codealchemist: Semantics-aware code generation

to find vulnerabilities in javascript engines. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[35] T. Hunt. The 773 Million Record "Collection #1" Data Breach. https://www.
troyhunt.com/the-773-million-record-collection-1-data-reach/, January 2020.

[36] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang. APOLLO: Automatic Detection
and Diagnosis of Performance Regressions in Database Systems (to appear). In
Proceedings of the 46th International Conference on Very Large Data Bases (VLDB),
Tokyo, Japan, Aug. 2020.

[37] V. V. Koushik. ALERT: SQLite database Remote Code Execution Vulnerability.
https://www.secpod.com/blog/sqlite-database-remote-code-execution/, August
2019.

[38] D. Laney. 3-D Data Management: Controlling Data Volume, Velocity and Variety.
Technical report, Feb. 2001.

[39] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for increasing
greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pages 475–485, 2018.

[40] G. Li, X. Zhou, S. Li, and B. Gao. QTune: A Query-Aware Database Tuning System
with Deep Reinforcement Learning. Proceedings of the VLDB Endowment, 12(12):
2118–2130, 2019.

[41] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu. Steelix: Program-
state Based Binary Fuzzing. In Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering, 2017.

[42] LLVM. LibFuzzer - A Library For Coverage-guided Fuzz Testing, 2017. http:
//llvm.org/docs/LibFuzzer.html.

[43] E. Lo, C. Binnig, D. Kossmann, M. Tamer Özsu, and W.-K. Hon. A Framework for
Testing DBMS Features. The VLDB Journal, 19(2):203–230, Apr. 2010.

[44] M. Marcozzi, W. Vanhoof, and J.-L. Hainaut. Test Input Generation for Database
Programs Using Relational Constraints. In Proceedings of the Fifth International
Workshop on Testing Database Systems, DBTest12, 2012.

[45] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study Of The Reliability Of
UNIX Utilities. Commun. ACM, 33(12):32–44, Dec. 1990.

[46] C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted queries for database
testing. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD âĂŹ08, page 499âĂŞ510, New York, NY, USA,
2008. Association for Computing Machinery. ISBN 9781605581026. doi: 10.1145/
1376616.1376668. URL https://doi.org/10.1145/1376616.1376668.

[47] MozillaSecurity. funfuzz. https://github.com/MozillaSecurity/funfuzz, 2020.
[48] S. Nagy and M. Hicks. Full-speed Fuzzing: Reducing Fuzzing Overhead Through

Coverage-guided Tracing. In Proceedings of the 40th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2019.

[49] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon. Semantic fuzzing
with zest. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 329–340, 2019.

[50] H. Peng, Y. Shoshitaishvili, and M. Payer. T-Fuzz: Fuzzing By Program Trans-
formation. In Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[51] K.-T. Rehmann, C. Seo, D. Hwang, B. Truong, A. BÃűhm, and D. Lee. Performance
Monitoring in SAP HANA’s Continuous Integration Process. ACM SIGMETRICS
Performance Evaluation Review, 43:43–52, 02 2016.

[52] M. Rigger and Z. Su. Testing Database Engines via Pivoted Query Synthesis.
arXiv preprint arXiv:2001.04174, 2020.

[53] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels. In Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[54] K. Serebryany. Sanitize, Fuzz, And Harden Your C++ Code. San Francisco, CA,
2016. USENIX Association.

[55] D. Slutz. Massive Stochastic Testing of SQL. Technical Report MSR-TR-98-
21, August 1998. URL https://www.microsoft.com/en-us/research/publication/
massive-stochastic-testing-of-sql/.

https://www.mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://www.sqlite.org/index.html
https://github.com/anse1/sqlsmith
https://docs.microsoft.com/en-us/sql/odbc/reference/processing-a-sql-statement?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/odbc/reference/processing-a-sql-statement?view=sql-server-ver15
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.mysql.com/customers/
https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://www.w3schools.com/sql/sql_ref_keywords.asp
https://www.w3schools.com/sql/sql_ref_keywords.asp
https://www.w3schools.com/sql/sql_operators.asp
https://www.sqlite.org/famous.html
https://github.com/anse1/sqlsmith#description
https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-service-small-business-cybersecurity-privacy/2139349/
https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-service-small-business-cybersecurity-privacy/2139349/
https://alloytools.org/documentation.html
https://alloytools.org/documentation.html
https://www.wired.com/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
https://www.wired.com/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
http://dx.doi.org/10.1007/s00778-015-0395-0
http://dx.doi.org/10.1007/s00778-015-0395-0
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://fayyad.com/data-science-revealed-a-data-driven-glimpse-into-the-burgeoning-new-field/
https://fayyad.com/data-science-revealed-a-data-driven-glimpse-into-the-burgeoning-new-field/
https://www.vice.com/en_us/article/pgkk8v/427-million-myspace-passwords-emails-data-breach
https://www.vice.com/en_us/article/pgkk8v/427-million-myspace-passwords-emails-data-breach
https://google.github.io/honggfuzz/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.secpod.com/blog/sqlite-database-remote-code-execution/
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/1376616.1376668
https://github.com/MozillaSecurity/funfuzz
https://www.microsoft.com/en-us/research/publication/massive-stochastic-testing-of-sql/
https://www.microsoft.com/en-us/research/publication/massive-stochastic-testing-of-sql/

[56] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R.Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[57] M. Stonebraker, S. Madden, and P. Dubey. Intel "Big Data" Science and Technology
Center Vision and Execution Plan. ACM SIGMOD Record, 42(1):44–49, 2013.

[58] J. Wang, P. Zhang, L. Zhang, H. Zhu, and X. Ye. A model-based fuzzing approach
for dbms. In 2013 8th International Conference on Communications and Networking
in China (CHINACOM), pages 426–431, Aug 2013. doi: 10.1109/ChinaCom.2013.
6694634.

[59] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar-Aware Greybox Fuzzing.
In Proceedings of the 41st International Conference on Software Engineering (ICSE),
Montreal, QC, Canada, May 2019.

[60] G. Wassermann and Z. Su. Sound and Precise Analysis of Web Applications for
Injection Vulnerabilities. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, New York, NY, USA, 2007.

[61] R. Xu and S. Vegasena. Vasilisk. https://blog.osiris.cyber.nyu.edu/2019/12/22/
vasilisk/, December 2019.

[62] W. Xu, S. Kashyap, C. Min, and T. Kim. Designing New Operating Primitives
to Improve Fuzzing Performance. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[63] J. Yan, Q. Jin, S. Jain, S. D. Viglas, and A. Lee. Snowtrail: Testing with Production
Queries on a Cloud Database. In Proceedings of the Workshop on Testing Database
Systems, New York, NY, USA, 2018.

[64] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In 27th USENIX Security Symposium (USENIX
Security 18), Baltimore, MD, Aug. 2018.

[65] M. Zalewski. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/afl, 2019.
[66] M. Zalewski. Technical "Whitepaper" For Afl-fuzz. http://lcamtuf.coredump.cx/

afl/technical_details.txt, 2019.

https://blog.osiris.cyber.nyu.edu/2019/12/22/vasilisk/
https://blog.osiris.cyber.nyu.edu/2019/12/22/vasilisk/
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Algorithm 2: Convert IR back to SQL query.
Input : ir : The pointer of the root IR,
Output : sqlQuery: The string of the SQL query

1 Procedure IRToString(ir)
2 if ir.Data is not NULL then

3 return ir.data
4 ResultString← new String;
5 if ir.Op.Prefix is not NULL then

6 ResultString← ResultString + ir.Op.Prefix
7 if ir.LeftOperand is not NULL then

8 LeftOperandString← IRToString(ir.LeftOperand);
9 ResultString← ResultString + LeftOperandString

10 if ir.Op.Mid is not NULL then

11 ResultString← ResultString + ir.Op.Mid
12 if ir.RightOperand is not NULL then

13 RightOperandString← IRToString(ir.RightOperand);
14 ResultString← ResultString + RightOperandString
15 if ir.Op.Suffix is not NULL then

16 ResultString← ResultString + ir.Op.Suffix
17 return ResultString

Table 4: Definition of our SQL intermediate representation (IR).

Since | is alo a symbol in the definition of symbol, we use comma instead.

program p ::= s | s p
statement s ::= v = e ;
expression e ::= β1 ^ β2 | ρ
operator ^ ::= ^p ^m ^s
oprand β ::= v | NULL
prefix ^p ::= k
mid ^m ::= k

suffix ^s ::= k
variable v ::= v0, v1, . . .
literal ρ ::= string | number

keyword k ::= NULL | SELECT | CREATE | FROM | WHERE | . . .

A PoCs for Case Study

Listing 1 shows the final PoC for the 11-year-old bug. Listing 2 shows the PoC where
the last line will dump the content of database v2 even through it has been deleted.
Listing 3 shows the PoC for the UAF bug that results from an assertion. Listing 4 shows
the PoC for the bug that exists for only one day. Listing 5 shows the PoC for the bug
that exists for only one hour.
01 |CREATE TABLE v0 (v1);
02 |CREATE VIEW v2 AS SELECT * FROM v0 WHERE v1
03 | IN (SELECT DISTINCT* FROM v0 ORDER BY v1);

04 |SELECT DISTINCT * FROM v0 NATURAL JOIN v2;

Listing 1: Case Study 1: 11-Year-Old Bug

01 |CREATE TABLE v0 (v1 char);
02 |INSERT INTO v0 VALUES ('1');
03 |CREATE TABLE v2(v3 text);
04 |INSERT INTO v2 VALUES ("1"*147), ("2"*42), ("3"*37);
05 |DROP TABLE v2;
06 |INSERT INTO V0 SELECT ZIPFILE(v1, NULL) FROM v0;
07 |INSERT INTO V0 SELECT ZIPFILE(v1, NULL) FROM v0;
08 |INSERT INTO V0 SELECT ZIPFILE(v1, NULL) FROM v0;
09 |SELECT HEX(v1) FROM v0;

Listing 2: Case Study 2: Database leakage

01 |CREATE TABLE v0 (a);
02 |CREATE VIEW v2 (v3) AS WITH x1 AS (SELECT * FROM v2);
03 |SELECT v3 AS x, v3 AS y FROM v2;

Listing 3: Case Study 3: UAF from assertion

01 |CREATE TABLE v0 (v1 INTEGER PRIMARY KEY) ;
02 |INSERT INTO v0 (v1) VALUES (0)
03 | ON CONFLICT DO NOTHING ;

04 |CREATE VIRTUAL TABLE v2
05 | USING rtree(v5 UNIQUE ON CONFLICT ABORT, v4, v3);

06 |SELECT 'a' FROM v0
07 | LEFT JOIN v2 ON v4 = 10 OR v5 = 10 ;

08 |SELECT * FROM v0 , v0 WHERE v1 = v1 AND v1 = 1;

Listing 4: Case Study 4: Bug exists for 1 day

01 |CREATE TABLE v0 (v1 DOUBLE CHECK((v1 IN (NULL))),
02 | v2 UNIQUE AS(v1>v1)) ;

03 |INSERT INTO v0
04 | VALUES (10) ON CONFLICT DO NOTHING ;

05 |SELECT 10.100000, 10 FROM v0
06 | CROSS JOIN v0 USING (v1) ;

Listing 5: Case Study 4: Bug exists for 1 hour

B IR Definition

Table 4 shows the formal definition of our IR. Each program is a sequence of assignment
statements in the static single assignment (SSA) form. Each statement has a left part,
which is a variable, and a right part, which is an expression. An expression is either a
literal (constant string or number) or an operation with an operator and two operands.
An operator can have an optional prefix, middle or suffix. Benefit from designing IR
like this, the mutation can be performed in a uniform way. Further, it makes translating
IR back to a SQL query easier.

C Query Translation

From SQL to IRs. Before translating an SQL query to IRs, we first parse the queries
into an AST using a parser. Then we use the following deep-first search algorithm to
translate an AST into a set of IRs:
(1) If an AST node has child nodes, recursively translate all of its child nodes first.
(2) If an AST node has less than two children, and each of the children is already

translated into an IR in (1), we just need to allocate a new IR and assign each of
the children to be its operands. All the keyword before the left operand will be set
as the prefix of the operator; all the keyword after the left operand and before the
right operand (if exist) will be set as the middle of the operator; all the keyword
after the right operand will be set as the suffix of the operator. Also, we fill in the
new IR with other information such as operator and type.

(3) If an AST node has more than 2 children, then we put all IRs of its children into
a queue in the same order as grammar. Each time we pop two IRs out from the
head of the queue and perform step 2 using these two IRs. In this way, we get a
new IR. Specifically, we guarantee the first IR we pop will be the left operand of
the new IR. If the queue becomes empty now, we finish translating this node. If
not, this IR doesn’t correspond to any node in the AST but only part of a node. In
this situation, it has a special type called Unknown. we push this IR to the head of
the queue and repeat step 3.

From the algorithm, we can see that one single AST node can be translated into several
IRs. Some of these IRs are immediate results of the translation with type kUnknown.
Since all IRs are of the same format, they can be mutated in a uniform way, including
these immediate IRs. In this way, our IR has a finer granularity than AST.
From IRs to SQL. Converting IRs back to SQL queries is required for fuzzing databases
as DBMSs only accept SQL queries as inputs. Such conversion is easy for our IRs and
can be achieved through a depth-first search. Algorithm 2 shows how to convert an IR
back to a SQL query. When we translate an AST node to IRs, we firstly try to translate
children of this node. Then we use every 2 results to generate a new IR until all the IRs
corresponding to children node had been processed. For this reason, we can know all
the children must be translated before the current node translate. Besides, after using
two IRs to generate a new IR, it will be put to the head of the queue. Next time, it will
be pop from the queue as the first IR, and become a left operand. This means, when
we try to convert an IR back to SQL query, we need to convert left operand before
the right operand. Line 2-4 shows if an IR carries data, it will not have other fields,
just return with the data. Line 5-22 shows we should convert from left to right and
combine them. Line 23 returns with the result of the combination.

D Dependency Graph Construction

The graph construction algorithm is shown in ?? and briefly described as follows: We
first collect all data-carrying IRs whose data information has been stripped off and
thus needs to be instantiated. We create a node v in the dependency graph G for
each collected IR. For every relation pair, say N depends on M . For each node vn in
type N , We search in G to find all nodes that have the same type as M . Based on the
property of the relation, we choose a node of typeM , say vm , and build an edge from
vm to vn .

Table 5: Detected bugs. Sqirrel found 63 bugs, including 51 from SQLite,
7 from MySQL and 5 from MariaDB. SQLite 3.31 was under development and
we tested the latest version on Github. †: SQLite does not has severity score
for bugs. ? means the severity has not been decided by developers.

UAF: use-after-free. BOF:buffer overflow of Global (G), Heap (H), and Stack (S).
BUF: buffer underflow. AF: assertion failure. OOM: out of memory. UB: undefined behavior.

ID Type Function Status Severity† Reference

SQLite v3.30.1, 300K LoC
1 BOF PRAGMA integrity_check Fixed Critical CVE-2019-19646
2 NP lookupName Fixed Critical CVE-2019-19317
3 UAF WITH Fixed High CVE-2019-20218
4 BOF exprListAppendList Fixed High CVE-2019-19880
5 BOF ZipFile extension Fixed High CVE-2019-19959
6 NP zipfileUpdate Fixed High CVE-2019-19925
7 NP parser Fixed High CVE-2019-19926
8 NP LEFT JOIN optimization Fixed High CVE-2019-19923
9 SBOF ALTER TABLE Fixed Medium CVE-2019-19645
10 NP JOIN INDEX Fixed Medium CVE-2019-19242
11 NP parser Fixed Medium CVE-2019-19924
12 BOF propagateConstantExprRewrite Fixed Medium CVE-2020-6405
13 UB fopen/fopen64 Fixed - 0c4f820
14 GBOF sqlite3VdbeMemPrettyPrint Fixed - 5ca0632
15 AF sqlite3GenerateConstraintChecks Fixed - ad5f157
16 AF IN expression optimization Fixed - b97f353
17 AF whereLoopAddOr Fixed - 9a1f2e4
18 AF WHERE with OR opt. Fixed - a4b2df5
19 AF wherePathSatisfiesOrderBy Fixed - 77c9b3c
20 AF Bytecode OP_DeferredSeek Fixed - be3da24
21 AF WHERE Fixed - 4adb1d0
22 AF WHERE flag setting Fixed - 118efd1
23 AF Bytecode OP_ResultRow release Fixed - 02ff747
24 AF sqlite3SelectReset Fixed - aa328b6
25 AF Bytecode OP_SCopy Fixed - 629b88c
26 AF scalar subquery Fixed - 629b88c
27 AF Bytecode OP_ResultRow Fixed - 02ff747
28 AF SELECT Fixed - fbb6e9f
29 AF WHERE Fixed - f1bb31e
30 AF PRAGMA encoding Fixed - b5f0e40
SQLite v3.31 (under development), 304K LoC
31 GBOF ZipFile extension Fixed - 8d7f44c
32 HBOF ZipFile extension Fixed - a194d31
33 HBUF ZipFile extension Fixed - 8d7f44c
34 UAF sqlite3GenerateConstraintChecks Fixed - 6d67aff
35 NP VTable Fixed - c7a5ff4
36 NP ORDER BYWindows Function Fixed - 73bacb7
37 NP SF_Aggregate flag setting Fixed - 9e10f9a
38 NP USING Fixed - 0824d5b
39 NP ZipFile extension Fixed - 0d21eae
40 NP LEFT JOIN uses values from IN Fixed - 74ebaad
41 AF WHERE Fixed - b592d47
42 AF NEVER marco can be true Fixed - 78b5220
43 AF impliesNotNullRow Fixed - aef8167
44 AF Code Generator for inline function Fixed - 25c4296
45 AF scalar SELECT w/ WINDOW Fixed - 4ea562e
46 AF Code Generator for sub query Fixed - fc705da
47 AF AND¸ optimization Fixed - 2b6e670
48 AF Bytecode OP_Move Fixed - 4cbd847
49 AF Bytecode OP_Copy-coalesce opt. Fixed - 9099688
50 AF sqlite3ExprCodeIN Fixed - f6ea97e
51 AF whereTermPrint Fixed - 6411d65
MySQL v8.0, 4250K LoC
52 OOM WITH optimization Verified Critical ID98190
53 NP JOIN optimization Fixed Serious ID98119
54 NP JOIN optimization Verified ? ID99438
55 NP UPDATE optimization Verified ? ID99424
56 AF SELECT Verified ? ID99420
57 AF INDEX Verified ? ID99421
58 AF CREATE TABLE Verified ? ID99454
MariaDB v10.5.3, 3641K LoC
59 BOF UPDATE Verified ? MDEV22464
60 BOF UPDATE Verified ? MDEV22476
61 AF JOIN Verified ? MDEV22461
62 AF SELECT Verified ? MDEV22462
63 AF Array OOB Verified ? MDEV22463

Table 6: P-values of Sqirrel v.s. other fuzzers. P-value less than 0.05
(shown in green) means the result is statistically significant.

v.s. Fuzzer DBMS Coverage Syntax Semantics Crash Bug

SQLite 0.00609 0.00609 0.00609 0.00609 0.00198

PostgreSQL 0.00609 0.000167 0.00225 - -AFL
MySQL 0.00596 0.00609 0.00609 - -

SQLsmith
SQLite 0.00545 0.00609 0.00609 0.00374 0.00198

PostgreSQL 0.989 0.999 0.000166 - -
Angora SQLite 0.00609 0.00609 0.00609 0.00374 0.00198

GRIMOIRE SQLite 0.00583 0.00374 0.00374 0.00374 0.00198

SQLite 0.00405 0.00405 0.00405 0.00377 0.00198
QSYM

PostgreSQL 0.00583 0.000166 0.0181 - -

!semantic
SQLite 0.00609 0.0183 0.00609 0.00557 0.00198

PostgreSQL 0.00609 0.198 0.0181 - -
MySQL 0.00596 0.996 0.00609 - -
SQLite 0.00609 0.00609 0.00609 0.00485 0.00198

PostgreSQL 0.00609 0.000167 0.000421 - -!feedback
MySQL 0.00596 0.0718 0.338 - -

Table 7: The absolute number of generated test cases for the evalu-

ated fuzzers in 24 hours.We categorize them into three groups: one with
syntax error, one with syntax correctness and semantic error, and one with
syntax correctness and semantic correctness.

Fuzzer DBMS Syntax-error Semantics-error Correct Total

SQLite 1,627,034 10,561,457 5,696,308 17,884,799
PostgreSQL 7,287 188,055 25,762 221,104Sqirrel
MySQL 50,728 77,750 28,314 156,792

AFL
SQLite 29,731,018 12,576,971 1,496,807 43,804,796
PostgreSQL 3,604,530 245,226 57,166 3,906,922
MySQL 185,102 42,332 1,478 228,912
SQLite 20,205,598 2,891,250 58,351 23,155,199

SQLsmith
PostgreSQL 3,752 821,485 394 825,631

Angora SQLite 14,540,639 3,866,102 654,526 19,061,267
GRIMOIRE SQLite 4,799,412 886,471 581,500 6,267,383
QSYM

SQLite 8,652,045 2,805,585 385,028 11,842,658
PostgreSQL 78,161 1,350 1,832 81,343
SQLite 24,443,355 15,754,468 809,209 19,008,012
PostgreSQL 9,591 184,441 3,174 197,206!semantic
MySQL 17,140 165,175 15,370 197,685

!feedback
SQLite 19,415,174 8,146,566 27,368 27,589,108
PostgreSQL 29,283 26,678 174 56,135
MySQL 66,695 26,746 19,974 113,415

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Query Processing in DBMS
	2.2 Challenges of DBMS Testing
	2.3 Our Approach

	3 Overview of Squirrel
	4 Intermediate Representation
	5 Syntax-Preserving Mutation
	5.1 Structure-Data Separation
	5.2 Type-Based Mutation

	6 Semantics-Guided Instantiation
	6.1 Data Dependency Inference
	6.2 IR Instantiation

	7 Implementation
	8 Evaluation
	8.1 DBMS Bugs
	8.2 Comparison with Existing Tools
	8.3 Contributions of Validity and Feedback

	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A PoCs for Case Study
	B IR Definition
	C Query Translation
	D Dependency Graph Construction

