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Spotting Critical Data is Challenging 

Previous work

• Manual inspection: tedious human efforts, not scalable

• FlowStitch [Security’15]: rely on explicit sources/sinks

• e.g., argument of setuid

• KENALI [NDSS’16]: rely on error codes in Linux Kernel

Critical data

• No common low-level properties (e.g., data type, memory location)

• Difficult to infer high-level semantics
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Our Contribution
• Automatic identification of syscall-guard variables

• Branch force

• Corruptibility assessment

• A framework - VIPER

• 34 unknown syscall-guard variables from 13 programs

• 4 new data-only attacks on SQLite and V8

• https://github.com/psu-security-universe/viper

https://github.com/PSU-Security-Universe/viper
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Motivating Example

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

How to identify “authenticated”?
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Motivating Example

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

How to identify “authenticated”?

Most data-only attacks rely on 
security-related syscalls

Security-related syscalls are often 
guarded by security checks

Syscall-Guard Branch: security checks 
as conditional branches 

Syscall-Guard Variable: variables in 
syscall-guard branches 

VIPER: identify syscall-guard variables
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Does Syscall-Guard Variable Matter?
A = syscall arguments
C = syscall-guard variables

11 syscall arguments

6 syscall-guard variables
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Challenges
• Identify sole contribution of each variable

• Symbolic execution can identify a complete path

• Limitation: cannot tell which variables are more critical

• Efficient and scalable analysis

• Static analysis 

• Limitations: indirect calls, inter-procedural analysis, etc
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Branch Force: Identify Syscall-Guard Branches
• Flip every branch during execution

• Hook syscalls to find newly invoked ones

• If yes, the flipped is a syscall-guard branch

…
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Corruptibility Assessment
• Backward Data-Flow Analysis

• Generate data flow of syscall-guard variables

• Assessment (for each memory node in the data flow)

• Metric 1: memory location

• Global > Heap > Stack

• Metric 2: number of memory-write instructions

• Assumption: every memory-write could be abused

More details can be found in the paper
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Workflow of VIPER
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Evaluation (setting)
• 20 programs for evaluation

• 9 programs with known data-only attacks (e.g., OpenSSH)

• 7 programs from FuzzBench (e.g., SQLite)

• 4 other well-tested programs (e.g., V8)

• Corpus

• Testcases in source code repository

• Online corpus (e.g., FuzzBench Dataset)

• Fuzz with AFL++
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Evaluation (identified syscall-guard variables)
36 syscall-guard variables from 14 programs
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Evaluation (exploitability investigation)  

4Exploit Construction

CVE Investigation

GDB Emulation
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Evaluation (time costs)  

We can combine VIPER 
with other tools for 

automatic exploit generation
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Case Study: New Attack on V8  

V8: Chromium JavaScript engine

• Used in Google Chrome, Microsoft Edge, Opera, Node.js …

• 3,586 KLoC in the latest version

VIPER result

• 2 potential syscall-guard variables

• 1 highly corruptible variable

• Location: global variable

• Memory-Write instructions: 93,512,607
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Case Study: New Attack on V8  

Our Attack (CVE-2021-30632) 

• Arbitrary read privilege

• Bypass ASLR

• Arbitrary write privilege

• Set options.enable_os_system to 1
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Demo
Link to data-only attack on v8

https://youtu.be/AmKnDjhBUaY
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Conclusion

• VIPER: automatically spotting syscall-guard variables for data-only attacks

• Design branch force and corruptibility assessment

• Find 34 previous unknown syscall-guard variables

• Build 4 new data-only attacks on SQLite and V8

• Open Source

• VIPER: https://github.com/psu-security-universe/viper

• Exploits: https://github.com/psu-security-universe/data-only-attacks

https://github.com/psu-security-universe/viper
https://github.com/PSU-Security-Universe/data-only-attacks
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