
VIPER: Spotting Syscall-Guard Variables
for Data-Only Attacks

Hengkai Ye Song Liu Zhechang Zhang Hong Hu

2

Current Exploit Method: Control-Flow Hijacking

Memory-Access
Primitives

Arbitrary Read
Arbitrary Write

Control Data

Return Address
Function Pointer

Control-Flow
Hijacking

Code Injection
Code Reuse

3

Control-Flow
Hijacking

Memory-Access
Primitives

Arbitrary Read
Arbitrary Write

Code Injection
Code Reuse

Control Data

Return Address
Function Pointer

Code-Pointer
Integrity

Control-Flow
Integrity

Current Exploit Method: Control-Flow Hijacking

4

Control-Flow
Hijacking

Memory-Access
Primitives

Arbitrary Read
Arbitrary Write

Code Injection
Code Reuse

Control Data

Return Address
Function Pointer

Non-Control
Data

Data-Only
Attack

Data-Oriented Programming
Block-Oriented Programming

Next Gen Exploit Method: Data-Only Attack
Code-Pointer

Integrity
Control-Flow

Integrity

5

Control-Flow
Attack

Memory-Access
Primitives

Arbitrary Read
Arbitrary Write

Code Injection
Code Reuse

Control Data

Return Address
Function Pointer

Non-Control
Data

Data-Only
Attack

Data-Oriented Programming
Block-Oriented Programming

Next Gen Exploit Method: Data-Only Attack

?

Code-Pointer
Integrity

Control-Flow
Integrity

?

How to Automatically Identify Security-Critical Non-Control Data
(Critical Data)

6

Spotting Critical Data is Challenging

Previous work

• Manual inspection: tedious human efforts, not scalable

• FlowStitch [Security’15]: rely on explicit sources/sinks

• e.g., argument of setuid

• KENALI [NDSS’16]: rely on error codes in Linux Kernel

Critical data

• No common low-level properties (e.g., data type, memory location)

• Difficult to infer high-level semantics

7

Our Contribution
• Automatic identification of syscall-guard variables

• Branch force

• Corruptibility assessment

• A framework - VIPER

• 34 unknown syscall-guard variables from 13 programs

• 4 new data-only attacks on SQLite and V8

• https://github.com/psu-security-universe/viper

https://github.com/PSU-Security-Universe/viper

8

Motivating Example

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

How to identify “authenticated”?

9

Motivating Example

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

How to identify “authenticated”?

Most data-only attacks rely on
security-related syscalls

Security-related syscalls are often
guarded by security checks

Syscall-Guard Branch: security checks
as conditional branches

Syscall-Guard Variable: variables in
syscall-guard branches

VIPER: identify syscall-guard variables

10

Does Syscall-Guard Variable Matter?
A = syscall arguments
C = syscall-guard variables

11 syscall arguments

6 syscall-guard variables

11

Challenges
• Identify sole contribution of each variable

• Symbolic execution can identify a complete path

• Limitation: cannot tell which variables are more critical

• Efficient and scalable analysis

• Static analysis

• Limitations: indirect calls, inter-procedural analysis, etc

12

Branch Force: Identify Syscall-Guard Branches
• Flip every branch during execution

• Hook syscalls to find newly invoked ones

• If yes, the flipped is a syscall-guard branch

…

I

S S1

I I

S2

I

Sn≠

13

Corruptibility Assessment
• Backward Data-Flow Analysis

• Generate data flow of syscall-guard variables

• Assessment (for each memory node in the data flow)

• Metric 1: memory location

• Global > Heap > Stack

• Metric 2: number of memory-write instructions

• Assumption: every memory-write could be abused

More details can be found in the paper

VariableRatorBranchForcer

14

Workflow of VIPER

Record
pass

record
binary

Record
execute

original
syscalls

branches

Flip
pass

flip
binary

Flip
execute

new
syscalls

Compare
branch
syscall
input

Record
execute

execution
trace

⊕

Syscall-guard
variable

＋Branch
＋Syscall
＋ Input
＋Corruptibilityprogram

LLVM IR

Backward
data
flow

analysis

memory
location

#memory
write insn

• Unique Branch Flipping

• Forkserver

save

uniq

flipped
branches

• Record execution trace on LLVM IR level

• Simulate execution based on recorded trace

Program

Input

15

Evaluation (setting)
• 20 programs for evaluation

• 9 programs with known data-only attacks (e.g., OpenSSH)

• 7 programs from FuzzBench (e.g., SQLite)

• 4 other well-tested programs (e.g., V8)

• Corpus

• Testcases in source code repository

• Online corpus (e.g., FuzzBench Dataset)

• Fuzz with AFL++

16

Evaluation (identified syscall-guard variables)
36 syscall-guard variables from 14 programs

36

16

17

Evaluation (exploitability investigation)

4Exploit Construction

CVE Investigation

GDB Emulation

18

Evaluation (time costs)

We can combine VIPER
with other tools for

automatic exploit generation

19

Case Study: New Attack on V8

V8: Chromium JavaScript engine

• Used in Google Chrome, Microsoft Edge, Opera, Node.js …

• 3,586 KLoC in the latest version

VIPER result

• 2 potential syscall-guard variables

• 1 highly corruptible variable

• Location: global variable

• Memory-Write instructions: 93,512,607

20

Case Study: New Attack on V8

Our Attack (CVE-2021-30632)

• Arbitrary read privilege

• Bypass ASLR

• Arbitrary write privilege

• Set options.enable_os_system to 1

21

Demo
Link to data-only attack on v8

https://youtu.be/AmKnDjhBUaY

22

Conclusion

• VIPER: automatically spotting syscall-guard variables for data-only attacks

• Design branch force and corruptibility assessment

• Find 34 previous unknown syscall-guard variables

• Build 4 new data-only attacks on SQLite and V8

• Open Source

• VIPER: https://github.com/psu-security-universe/viper

• Exploits: https://github.com/psu-security-universe/data-only-attacks

https://github.com/psu-security-universe/viper
https://github.com/PSU-Security-Universe/data-only-attacks

Thank You

Question?
hengkai@psu.edu

