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Abstract
Indirect calls, while facilitating dynamic execution character-
istics in C and C++ programs, impose challenges on precise
construction of the control-flow graphs (CFG). This hinders
effective program analyses for bug detection (e.g., fuzzing)
and program protection (e.g., control-flow integrity). Solu-
tions using data-tracking and type-based analysis are pro-
posed for identifying indirect call targets, but are either time-
consuming or imprecise for obtaining the analysis results.
Multi-layer type analysis (MLTA), as the state-of-the-art ap-
proach, upgrades type-based analysis by leveraging multi-
layer type hierarchy, but their solution to dealing with the
information flow between multi-layer types introduces false
positives. In this paper, we propose strong multi-layer type
analysis (SMLTA) and implement the prototype, DEEPTYPE,
to further refine indirect call targets. It adopts a robust solution
to record and retrieve type information, avoiding information
loss and enhancing accuracy. We evaluate DEEPTYPE on
Linux kernel, 5 web servers, and 14 user applications. Com-
pared to TypeDive, the prototype of MLTA, DEEPTYPE is
able to narrow down the scope of indirect call targets by
43.11% on average across most benchmarks and reduce run-
time overhead by 5.45% to 72.95%, which demonstrates the
effectiveness, efficiency and applicability of SMLTA.

1 Introduction

Indirect call, used commonly to determine the functions to
be called at runtime, is a fundamental feature of C/C++ for
achieving dynamic program characteristics. Production soft-
ware (e.g., nginx) and operating systems (e.g., Linux) inten-
sively utilize indirect calls to dynamically adapt program
behaviors according to runtime environments and demands,
through loading and linking the desired shared libraries.

Precise identification of indirect call targets is of paramount
importance, as the control-flow transitions between indirect
calls and their respective targets play an essential role in the
construction of a global control-flow graph (CFG), which is

extensively adopted in various security-related fields. Static
analysis tools rely on CFG for bug detection and program
hardening [17,20,22,25,43,61–63,66,68], program partition-
ing and privilege separation [5,8,18,26,28,42], pruning redun-
dant paths in symbolic execution [4,7,10,50,58], and guiding
directed fuzzing for specific objectives [3,9,32,36,38,39,47].
Additionally, control-flow Integrity (CFI) defenses [1, 6, 14,
34,35,49,65,67] have been proposed to mitigate control-flow
hijacking attacks. However, the strength of CFI depends on
the precision of CFG. Imprecise CFG construction results in
advanced attacks that bypass CFI [19, 29, 41, 44, 45, 60].

The key challenge in construction of an accurate CFG is
identifying the targets of indirect calls. Modern compilers
like GCC and Clang cannot determine these targets with-
out additional analysis and instrumentation. Conservative
approaches [65, 67] consider all functions or those with ad-
dress taken as potential targets for each indirect call, pro-
ducing a considerable number of false positive edges within
CFG, which impair the functionality of the applications built
upon CFG and impose unnecessary cost. Data tracking anal-
ysis [14, 23, 46, 48, 68] tracks value flow, which pursues ac-
curacy at the cost of high performance overhead while the
accuracy depends on the precision of the taint analysis and
points-to analysis techniques they employ. Type-based analy-
sis [34,49,52] checks function signatures to identify functions
whose types match with an indirect call. While this approach
is efficient, it is susceptible to false positive targets if many
functions share the same type as the actual target.

Multi-layer type analysis (MLTA) [27] was proposed for
the purpose of improving the accuracy of type-based analysis.
Given the fact that function pointers can be members of com-
posite data structures, the type of a function pointer along with
the composite types holding it compose a multi-layer type.
For example, if function pointer ptr with type void (int)* is
a member of object a with type struct.A, the variable a.ptr
has multi-layer type void (int)* | struct.A. A function f also
has this multi-layer type if it is assigned to a.ptr. MLTA
matches multi-layer types of functions and indirect calls to
refine indirect call targets.



However, multi-layer types introduce challenges in type
matching because address-taken functions may be propagated
between different multi-layer types through information flow,
making it hard to collect all targets for an indirect call (see
§2.2). MLTA bypasses the challenges by splitting a multi-
layer type into several two-layer types, and adopts each layer’s
type as the basic unit for information storage and type match-
ing (see §2.4), which avoids missing targets while producing
false positive targets. It relinquishes the type information be-
tween spitted layers and weakens the restrictions provided by
multi-layer types, thereby negatively affecting accuracy.

This paper proposes an advanced approach, Strong Multi-
Layer Type Analysis (SMLTA), to mitigate the false positive
targets produced by MLTA. It adheres to the strong restriction
that identifies only those functions as targets whose entire
multi-layer types match with the indirect calls. SMLTA ad-
dresses the challenges in multi-layer type matching by resolv-
ing the relationships between multi-layer types based on the
directions of information flow, and utilizes an adapted breadth-
first search (BFS) algorithm [56] to discover all multi-layer
types engaged in the propagation of target functions. It also
employs a conservative strategy to deal with ambiguous type
information due to information flow.

We implemented SMLTA within a prototype, DEEPTYPE,1

which contains two working phases: 1) information collection
and 2) target identification. In the first phase, DEEPTYPE
establishes and maintains the mappings between multi-layer
types and their associated functions (§4.1). The collected
multi-layer types are organized in a hierarchical manner for
the purpose of quick retrieval (§4.2). It also preserves the
relationships between multi-layer types as indicated by the
directions of information flow, facilitating the tracing of multi-
layer types engaged in function propagation (§4.3). In the
second phase, DEEPTYPE determines the multi-layer type of
each indirect call and discovers all other multi-layer types
engaged in target propagation (§5.1). Then, it verifies whether
the engaged multi-layer types match with the indirect call
to precisely identify associated functions as targets (§5.2).
Additionally, DEEPTYPE handles diverse instructions and
code patterns in real-world programs to reduce the inaccuracy
caused by corner cases.

We evaluated DEEPTYPE on Linux kernel, 5 server pro-
grams, and 14 user-level applications. We compared it with
TypeDive (i.e., the prototype of MLTA), as MLTA is the-state-
of-the-art approach in type-based analysis. The results indi-
cate that DEEPTYPE outperforms TypeDive in the precision
of indirect call target identification, reducing the average num-
ber of indirect call targets by 43.11% on average across most
benchmarks. In terms of performance, DEEPTYPE decreases
the runtime overhead by 5.45% to 72.95% and achieves lower
memory consumption in all evaluated benchmarks. Addition-
ally, a case study on a real-world CVE shows that SMLTA

1DEEPTYPE is available at https://github.com/s3team/DeepType.git.

is more powerful than MLTA in reducing attack surface and
preventing exploits.

In summary, this paper makes the following contributions.
• Propose a novel approach called strong multi-layer type

analysis (SMLTA) that employs strong restrictions pro-
vided by multi-layer types to refine indirect call targets.

• Develop a prototype, DEEPTYPE, which overcomes chal-
lenges in multi-layer type matching and utilizes SMLTA
to precisely and efficiently identify indirect call targets.

• Evaluate DEEPTYPE with 20 benchmarks and compare
it with TypeDive, exhibiting its capability in further re-
fining indirect call targets and reducing both runtime
overhead and memory consumption. Additionally, we
demonstrate that SMLTA offers a higher level of security.

2 Motivation

This section clarifies the challenges in indirect call target iden-
tification using multi-layer types, describes how MLTA and
SMLTA address these challenges, and highlights the accuracy
improvement achieved by SMLTA through an example.

2.1 Motivating Example
Listing 1 shows a code snippet with buffer overflow vulner-
ability. The strcpy at line 25 can overwrite the memory
location adjacent to buf if the length of msg is larger than
MAX_LEN. The adjacent memory location belongs to w_op,
which is afterwards assigned to u->uw at line 26. So, the
function pointer u->uw->low_priv can point to an address
manipulated by the attacker after buffer overflow occurs. At
line 29, this function pointer is used to make an indirect call,
resulting in arbitrary execution if a lenient CFG is deployed
on this program. To prevent such control-flow hijacking at-
tack and other unexpected bugs caused by imprecise CFG,
precisely identifying indirect call targets is crucially required.

2.2 Challenges
The use of multi-layer types presents challenges in match-
ing indirect calls with all potential targets, particularly when
functions are propagated across multi-layer types due to infor-
mation flow. We categorize the challenges into three classes
consistent to three forms of information flow.

First, type assignment and casting operations can trans-
form one multi-layer type into another, resulting in infor-
mation flow from the original to the transformed type, as
well as affecting members of composite types. For exam-
ple, the type assignment operation (line 26) indicates infor-
mation flow from w_op to u->uw, as well as w_op->low_-
priv to u->uw->low_priv. In this context, the function
write_to_shared_mem with multi-layer type void (char*)*
| struct.Write (line 7), should be propagated to void (char*)*
| struct.Write | struct.User. Because information flow affects



1 typedef void (*fp)(char*);
2 struct Write {fp low_priv; fp high_priv;};
3 struct User {struct Write *uw; ...};
4 struct Kernel {struct Write *kw; ...};
5

6 void func_init(struct Write *w_op, struct Kernel *k) {
7 w_op->low_priv = &write_to_shared_mem;
8 w_op->high_priv = &write_to_protected_mem;
9 k->kw->low_priv = &write_to_protected_mem;

10 k->kw->high_priv = &write_to_kernel_mem;
11 }
12

13 void user_priv_write(fp icall_ptr, char *buf) {
14 ...
15 (*icall_ptr)(buf);
16 }
17

18 void write_to_mem (char *msg) {
19 struct Kernel *k;
20 struct User *u;
21 struct Write *w_op;
22 char buf[MAX_LEN];
23 func_init(w_op, k);
24 strcpy(buf, msg); // buffer overflow
25 u->uw = w_op;
26 ...
27 if (user_mode()) {
28 if (low_priv()) (*u->uw->low_priv)(buf);
29 else user_priv_write(u->uw->high_priv, buf);
30 }
31 }

Listing 1: A program vulnerable to control-flow hijacking attack through
indirect call. The strcpy at line 25 has buffer overflow vulnerability, which
allows attackers to rewrite the function pointer u->uw->low_priv and
redirect control-flow through the indirect call at line 29.

individual layers as well as overall multi-layer types, it is chal-
lenging to track various multi-layer types involved in function
propagation and identify all potential targets.

Second, a function pointer performing as an actual pa-
rameter can sometimes discard outer layers during param-
eter passing, leading to discrepancies of type information
at different positions. For instance, the actual parameter
u->uw->high_priv (line 30) has multi-layer types void
(char*)* | struct.Write and void (char*)* | struct.Write
| struct.User, while the corresponding formal parameter
icall_ptr (line 13) has type void (char*)*. The obscured
outer layers can result in mismatch of multi-layer types, mak-
ing it challenging to identify all potential targets for an indirect
call that uses a formal parameter.

Third, some mechanisms, such as virtual tables [57] used
by compilers, can introduce information flow between com-
posite types (e.g., struct.Write) and general pointer types (e.g.,
char*). These general pointer types can hinder function prop-
agation since they do not have associated functions, resulting
in missing potential targets.

2.3 Traditional Type-Based Analysis
Traditional type-based analysis examines the signatures of
address-taken functions and the types of indirect calls. If these
types match, the function is identified as a potential target.
This approach is not impacted by the challenges described in
Section 2.2 because it solely relies on the types of function
pointers, ignoring composite data structures holding them.

Type Index Functions

void (char*)* -
write_to_shared_mem(7)

write_to_protected_mem(8,9)
write_to_kernel_mem(10)

struct.Write 0
write_to_shared_mem(7)
write_to_protected_mem(9)

1
write_to_protected_mem(8)
write_to_kernel_mem(10)

struct.User 0 -

... -

struct.Kernel 0
write_to_protected_mem (9)
write_to_kernel_mem(10)

... -

Table 1: Mappings between types and functions in MLTA for Listing 1.
MLTA splits multi-layer types into two-layer types and maintains mappings
between these types and associated functions. The two-layer types are pre-
sented by a composite type along with an index, which indicates the member
type at a specific position. For example, struct.Write with index 0 represents
the two-layer type void (char*)* | struct.Write. The numbers in parenthesis
indicate the line numbers where the functions are confined to the types.

In Listing 1, the indirect call at line 29 has type
void (char*)*, which matches with functions *shared*,2

*protected*, and *kernel*. As a result, all of them are
identified as targets though only *shared* is the real target.
Similarly, the indirect call at line 15 also has the three targets
while only function *protected* is the real target.

2.4 MLTA

MLTA utilizes the extra type information extracted from com-
posite data structures and supports field-sensitivity consider-
ing that a composite data structure may have multiple mem-
bers holding different functions. If one function is assigned
to a pointer, MLTA records the mappings between the multi-
layer type and the function, which is called "type-func con-
finement". It splits multi-layer types and uses each layer type
along with an index as key, as Table 1 shows. Similarly, the
original and transformed types in type assignment and casting
operations are logged in a split manner as well.

In Listing 1, the indirect call at line 29 has multi-layer type
void (char*)* | struct.Write | struct.User. MLTA identifies
potential targets by collecting associated functions for each
layer and calculating the intersection to find common func-
tions. For the first layer void (char*)* and the second layer
struct.Write with index 0, both have no original type. Thus,
MLTA retrieves the associated functions from Table 1, re-
sulting in set {*shared*, *protected*, *kernel*} for the
first layer and set {*shared*, *protected*} for the second
layer. The third layer struct.User with index 0 has an original
type struct.Write (line 26), thus MLTA gathers the associ-
ated functions for both types, generating a set {*shared*,

2In example descriptions, we use simplified function names for readability.
For instance, we use *A* to represent write_to_A_mem.



Type Functions

void (char*)* | s.Write#0 write_to_shared_mem(7)

void (char*)* | s.Write#1 write_to_protected_mem(8)

void (char*)* | s.Write#0 | s.Kernel#0 write_to_protected_mem(9)

void (char*)* | s.Write#1 | s.Kernel#0 write_to_kernel_mem(10)

Table 2: Mappings between types and functions in SMLTA for Listing
1 program. SMLTA treats each multi-layer type as a whole and uses the
entire multi-layer type as a basic unit in storage-purposed data structures.
In this table, the structs are abbreviated as "s". The index of each member
in a composite type is denoted as "#N" where N is a number. For instance,
s.Write#0 represents struct.Write with index 0.

*protected*, *kernel*}. Finally, it computes the intersec-
tion of these three sets. The common functions in resulting
set {*shared*, *protected*} are identified as targets. The
indirect call at line 15 with type void (char*)* has no original
type. So, MLTA directly generates the target set {*shared*,
*protected*, *kernel*}, according to Table 1. In contrast
with tradition type-based analysis, MLTA narrows down the
target set for the indirect call at line 29, but there is still a
visible gap between MLTA result and ground truth.

In MLTA, the first challenge is addressed by splitting multi-
layer types. The complex information flow between them is
simplified to straightforward flow between individual types,
which is easier to track. The second challenge is addressed
by conservatively confining a function to each layer of its
multi-layer type, ensuring no missing target even if the outer
layers are discarded. To overcome the third challenge, MLTA
marks all general pointer types and composite types that in-
teract with them as "escaping types". It skips the layers with
escaping types when calculating intersection, which removes
the impact of general pointer types.

2.5 SMLTA
SMLTA employs entire multi-layer types as keys for informa-
tion storage, as Table 2 shows, to circumvent the false positive
targets caused by splitting multi-layer types. The relationships
between multi-layer types are recorded in the same way. We
call multi-layer type T2 a "friend type" relative to multi-layer
type T1 if information flows from T2 to T1 (i.e., a function
may be propagated from T2 to T1). To identify targets for
an indirect call, SMLTA exhaustively searches for its friend
types and gathers all associated functions as targets.

In Listing 1, the indirect call at line 29 has multi-layer type
void (char*)* | struct.Write#0 | struct.User#0 where "#0"
indicates the index. SMLTA exhaustively discovers all friend
types that may have information flowing to this multi-layer
type, only void (char*)* | struct.Write#0 in this example,
and then gathers associated functions of these multi-layer
types. The resulting set {*shared*} contains the identified
target, which is exactly the real target. The indirect call at
line 15 has type void (char*)*. Because the function pointer
icall_ptr is a parameter, SMLTA adds a "fuzzy type" as its

outer layer, which matches with any type. Thus, this indirect
call can match with all address-taken functions whose first
layer is void (char*)*, resulting in the target set {*shared*,
*protected*, *kernel*} without missing potential targets.

In SMLTA, the first challenge is addressed by maintaining
the relationships between multi-layer types and the exhaustive
search of all friend types engaged in function propagation.
The second challenge is addressed by fuzzy type, which con-
servatively admits that all types could possibly match with the
discarded outer layer types, ensuring no missing targets. The
third challenge is also solved by conducting an exhaustive
search of friend types. This search treats general pointer types
as bridges between composite types, unblocking function
propagation stuck on general pointer types.

3 Overview

The prototype of SMLTA is called DEEPTYPE, which con-
tains two phases, as is shown in Figure 1.

Given bitcode file(s) as input, phase 1 analyzes initializa-
tion instructions and type propagation instructions to collect
information. An initialization instruction assigns a function
to a function pointer. We say, it "confines" the function to the
corresponding multi-layer type. The mappings between the
entire multi-layer types and associated functions are stored
in Type-Func Map. For quick access and retrieval purpose,
DEEPTYPE archives these multi-layer types in Type Lookup
Maps in a hierarchical manner using multi-layer mappings.
Type propagation instructions include type assignment and
casting instructions that possibly propagate functions from
one multi-layer type to another through information flow.
DEEPTYPE records the mappings between destination and
source multi-layer types of information flow in Type-Type
Map using entire multi-layer types as keys and values. The
sources are "friend types" relative to destinations.

In phase 2, DEEPTYPE analyzes each indirect call instruc-
tion to figure out its multi-layer type. If the function pointer
is a formal parameter, fuzzy type is added to represent poten-
tially discarded outer layers. Then, DEEPTYPE exhaustively
searches for friend types from Type-Type Map, retrieves multi-
layer types that match with the indirect call or its friend types
from Type Lookup Maps, and obtains associated functions
from Type-Func Map. The union of all associated functions
are potential targets for the indirect call. Finally, DEEPTYPE
outputs a list of indirect calls in the analyzed program along
with their locations and respective targets.

4 Phase 1: Information Collection

This section presents how SMLTA collects information from
initialization and type propagation instructions, and how it
organizes multi-layer types hierarchically.



Program 
bitcode

Phase 2:

Target 
Identification

I-call 1 loc. …
Target set …

I-call 2 loc. …
Target set …

……

Type-Func Map

Type-Type Map

Phase 1:

Information 
Collection

Type Lookup Maps

Figure 1: Workflow of DEEPTYPE. DEEPTYPE contains two working phases. In phase 1, it collects and records type information in three data structures. In
phase 2, it refers to the recorded type information to discover friend types, gather associated functions, and identify targets.

4.1 Type-Function Confinements

A function could be considered as a potential target of an in-
direct call only if it is utilized to initialize local and/or global
variables. We confine the function to the multi-layer type
of the initialized function pointer by establishing a mapping
between them in Type-Func Map. It is straightforward to de-
termine the multi-layer types of local variables, by extracting
the types layer by layer as they are loaded. However, the multi-
layer types of formal parameters and nested global variables
may not be fully ascertainable using the same method.

The multi-layer type of a formal parameter is uncertain
because it may have extra outer layers that are lost during
parameter passing. To complete its multi-layer, we introduce
fuzzy type, as defined in Definition 1, to cover for missing
layers. The fuzzy type can be matched with any type. For
instance, void (int)* | fuzzy type matches with any multi-layer
type whose first layer is void (int)*, including void (int)*, void
(int)* | struct.A#0, and void (int)* | struct.A#0 | struct.X#0,
etc. Similarly, when an index is uncertain,3 we employ fuzzy
index to conservatively match with any index.

Definition 1 Fuzzy type marks the type of an uncertain layer.
The existence of this layer is uncertain, and the type of this
layer is uncertain. In type verification, a fuzzy type can match
with any type, even if the corresponding layer does not exist.

A nested global variable is one that initializes members
of other variables, thus may have extra layers involved in
other initialization instructions. Its multi-layer type is uncer-
tain when analyzing the instruction initializing it. To gather
complete type information, we track all variables that hold
this global variable iteratively. For instance, Listing 2 shows
a nested global variable x86_64_elf32_vec (line 8) with
type struct.bfd_target, which initializes a member of another
global variable _bfd_target_vector (line 13). Thus, the
function pointer_bfd_read_ar_hdr_fn (line 4), as a mem-
ber of the global variable, should be confined to both void
(bfd*)* | struct.bfd_target#53 and void (bfd*)* | struct.bfd_-
target#53 | vector.bfd_target#237, ensuring that a potential
target could be identified through both multi-layer types.

3In LLVM IR, index is typically derived from GetElementPtrInst when
the corresponding operand is a constant. However, index may be non-constant
operand such as a phi instruction, indicating an uncertain index until runtime.

1 typedef struct bfd_target
2 {
3 ...
4 void* (*_bfd_read_ar_hdr_fn) (bfd *);
5 ...
6 } bfd_target;
7

8 extern const bfd_target x86_64_elf32_vec;
9 ...

10 static const bfd_target * const _bfd_target_vector[] =
11 {
12 ...
13 &x86_64_elf32_vec, // nested global variable
14 ...
15 };

Listing 2: Nested global variable. x86_64_elf32_vec is a nested global
variable because it serves as a member in another global variable _bfd_-
target_vecor. This example is from targets.c from binutils-2.35.

4.2 Multi-layer Type Organization

For efficient access and retrieval, we organize the collected
multi-layer types hierarchically using multi-layer mappings
and store them in Type Lookup Maps. We prepare N maps
for a program, in which the multi-layer types have up to N+1
layers. More details are illustrated in Appendix A.

To archive a multi-layer type T, the first n layers of T is
used as a key in the n-th map (where 1≤ n ≤ N), and the n-th
layer of T is stored as the corresponding value. If T consists
of M layers, where M is less than N, only the first M maps are
utilized for storage. Figure 2 shows an outline of Type Lookup
Maps and exemplifies the utilization of this data structure via
two multi-layer types: 1⃝ void (int)* | struct.A | struct.X and
2⃝ void (int)* | struct.B | struct.Y | struct.P.4

The First Map stores the mapping between the common
first-layer type void (int)* and respective second-layer types
struct.A, for 1⃝, and struct.B, for 2⃝. The Second Map stores
mappings between first-two-layer types and corresponding
third-layer types, among which the first entry is for 1⃝ and
the second entry is for 2⃝. The Third Map works in a similar
way to store the rest part of 2⃝. If a multi-layer type contains
more than four layers, we will establish more maps based the
number of layers, to record the rest parts.

4The indexes are omitted to simplify the example and emphasize the key
point, which is how to hierarchically archive multi-layer types.
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key value set

void(int)* {struct.A, struct.B}

…… {……}

The Second Map

key value set

void(int)* | struct.A {struct.X}

void(int)* | struct.B {struct.Y}

…… {……}

The Third Map

key value set

void(int)* | struct.B | struct.Y {struct.P}

…… {……}

Type Lookup Maps

……①

② ②

Figure 2: Outline of Type Lookup Maps with two example types stored. Type Lookup Maps use multi-layer mappings to archive multi-layer types. The First
Map records the first-layer types and corresponding second-layer types; The Second Map records the first-two-layer types and corresponding third-layer types;
So on so forth. 1⃝ void (int)* | struct.A | struct.X and 2⃝ void (int)* | struct.B | struct.Y | struct.P are archived as examples.

1 struct section_add {...; asection *section;};
2

3 asection *bfd_get_section_by_name (bfd *abfd, const
char *name);

4

5 copy_object (bfd *ibfd, bfd *obfd, const
bfd_arch_info_type *input_arch)

6 {
7 ...
8 struct section_add *pupdate;
9 ...

10 pupdate->section = bfd_get_section_by_name (ibfd,
pupdate->name);

11 ...
12 }

Listing 3: Type assignment. A variable with multi-layer type asection is
assigned to another variable with multi-layer type asection|struct.section_-
add#5 in line 10. This example is from objcopy.c in binutils-2.35.

4.3 Type Relationship Resolving
A function can be propagated from one multi-layer type to an-
other via type propagation instructions. To collect all involved
multi-layer types, we analyze type assignment and casting
instructions and introduce friend type, as defined in Definition
2, to describe their relationships.

Definition 2 A is a friend type relative to B if either of the
following holds:

1. There exists information flow from A to B.
2. There exists information flow from A to C, and C to B.

Due to the information flow, the associated functions of A are
propagated to B. We say, A "shares" functions with B.

The second condition manifests that one multi-layer type
is a friend type relative to another if there exists a chain of
information flow following the first condition. This chain can
be as long as the entire program. We record the mapping
between one multi-layer type and its direct friend types, sat-
isfying the first condition, in Type-Type Map. The indirect
friend types, satisfying the second condition, can be inferred
by the recorded relationships.

A type assignment instruction assigns the value of one vari-
able to another. They have different multi-layer types, but
share the same first-layer type. Such instructions create a one-
way relationship: the source type of information flow is a
friend type relative to the destination type. For example, List-
ing 3 shows a type assignment operation (line 10) where the

1 static struct bfd_hash_entry *
2 string_hash_newfunc (struct bfd_hash_entry *entry,

struct bfd_hash_table *table, const char *string)
3 {
4 struct string_hash_entry *ret = (struct

string_hash_entry *) entry;
5 ...
6 return (struct bfd_hash_entry *) ret;
7 }

Listing 4: Type casting. struct.bfd_hash_entry is casted to struct.string_-
hash_entry in line 4. struct.string_hash_entry is casted to struct.bfd_hash_-
entry in line 6. This example is from ecofflink.c in binutils-2.35.

return value of function bfd_get_section_by_name is as-
signed to pupdate->section, resulting in information flow
from the source type asection to the destination type asec-
tion | struct.section_add#5, which allows asection to share its
associated functions with asection | struct.section_add#5.

A type casting instruction transforms one multi-layer type
into another, with the first layers of each being distinct. In
Listing 4, the original type of entry is struct.bfd_hash_en-
try* (line 2). It is transformed to struct.string_hash_entry at
line 4. The type casting at line 6 transforms struct.string_-
hash_entry* to struct.bfd_hash_entry*. Considering the flow-
insensitivity feature of our static analysis, 5 it is uncertain
whether a type casting instruction executes before or after an
indirect call, making it uncertain whether the multi-layer type
of the indirect call is transformed from another multi-layer
type. To address this ambiguity, we conservatively establish a
bidirectional relationship between the source and destination
types, allowing them to share associated functions with each
other so that indirect calls do not miss any potential target.

5 Phase 2: Target Identification

This section presents how SMLTA identifies indirect call
targets utilizing the type information stored in Type-Func
Map, Type-Type Map and Type Lookup Maps.

5.1 Friend Type Discovery
For each indirect call, SMLTA examines whether the function
pointer is a formal parameter to decide if fuzzy type should be

5SMLTA is flow-insensitive for efficiency. Tracking the execution se-
quence of instructions is beyond our scope.



Before-Part Fragment After-Part

A |B|C
A| B |C

A|B| C
A|B |C

A| B|C
A|B|C

Table 3: A table recording the fragments of multi-layer type A|B|C. A
multi-layer type A|B|C with 3 layers has 6 possible fragments, including
single-layer fragments, two-layer fragments, and three-layer fragments.

added to complete its multi-layer type. Once the multi-layer
type of an indirect call is ascertained, we discover all of its
friend types to ensure that the associated functions shared by
the friend types will be identified as potential targets. Given
that a multi-layer type can be partially transformed from an-
other type, we extract all possible fragments, as defined in
Definition 3, to support the exhaustive search of friend types
relative to the entire multi-layer type of the indirect call.

Definition 3 A fragment of multi-layer type T is one or mul-
tiple continuous layers in T.

A multi-layer type with N layers has (1+N)×N
2 possible

fragments, as exemplified in Table 3. The Fragment column
lists all possible fragments while the layers before and after
each fragment are respectively listed in Before-Part and
After-Part columns. We can substitute each fragment with
its friend types and concatenate these types with correspond-
ing Before-Part and After-Part to generate friend types relative
to the entire multi-layer type, thereby transforming the task
of searching for friend types relative to the multi-layer type
into discovering friend types for individual fragments.

For each fragment, the search of direct friend types is
straightforward, which is achieved by querying Type-Type
Map. However, the exhaustive search of indirect friend types
can be challenging because these types may be buried in
long, cyclic chains of information flow. To address this is-
sue, SMLTA employs an exhaustive search algorithm adapted
from Breadth-First Search, which monitors the state of discov-
ered friend types to bypass cycles in chains. This algorithm
is detailed in Algorithm 1, where Frag represents a fragment
and Fragft represents its friend types.

We prepare three sets, Schecked , Schecking, and Sunchecked , to
manage friend types in different states and prevent cyclic
search. A friend type currently being used to query the Type-
Type Map is held in Schecking and is moved to Schecked post-
query. Sunchecked holds newly discovered friend types for the
next round of search. Initially, the current Frag is placed into
Schecking. In each search iteration, we look for friend types for
elements in Schecking by querying Type-Type Map and place
newly discovered friend types to Sunchecked . After each itera-
tion, update the three sets for the following round of search.
Repeat this process until Schecking is empty and Scheked is no
more updated, indicating that all Fragft have been discovered.

Algorithm 1 Exhaustive search of Fragft
Require: Type-Type-Map, Frag
Ensure: All Fragft are placed in Schecked
1: Schecked ←{}
2: Schecking←{Frag}
3: Sunchecked ←{}
4: Schecked_origSize← 0
5: Schecked_newSize← 0
6: while Schecking is not empty do
7: for e in Schecking do
8: Sunchecked = SetMerge(Sunchecked , Type-Type-Map[e])
9: Schecked_origSize = Schecked .size()

10: Schecked = SetMerge(Schecked ,Schecking)
11: Schecked_newSize = Schecked .size()
12: Schecking.empty()
13: Schecking = Sunchecked
14: Sunchecked .empty()
15: if Schecked_origSize == Schecked_newSize then return Schecked

Given friend types of each fragment, we generate the friend
types relative to the entire multi-layer type of an indirect call
by concatenation operations, and gather them in a set S along
with the multi-layer type itself for type verification.

5.2 Type Verification

The elements in S, are not exactly the multi-layer types that
confine target functions of this indirect call due to three kinds
of mismatches: 1) Some friend types generated through frag-
ments do not exist among the recorded multi-layer types; 2)
Some elements in S, containing fuzzy type and index, ap-
parently differ from but actually match with the recorded
multi-layer types; 3) Some recorded multi-layer types, con-
taining fuzzy type and index, apparently differ from but ac-
tually match with the elements in S. Hence, we query Type
Lookup Maps for type verification and collecting verified
types, which is defined in Definition 4.

Definition 4 A verified type is a multi-layer type that is
recorded in Type-Func Map and Type Lookup Maps, and
matches with an element in S.

To perform type verification, we check each element in S
to find verified types in Type Lookup Maps. Given a multi-
layer type T in S, first of all, we pass the first-layer type of
T to The First Map to achieve a scope of second-layer types.
Then, check whether the elements in this scope match with
the second-layer type of T. Concatenate the first-layer type
with every matched second-layer type to generate a set of
first-two-layer types. Lookup The Second Map to achieve
a scope of third-layer types and find those who match with
the third-layer type of T. Following this working pattern to
check the remaining layers until all verified types are retrieved
from Type Lookup Maps. Finally, query Type-Func Map with
verified types to find associated functions. The union of such
functions are identified as potential targets of the indirect call.



store <2 x i64> %12, <2 x i64>* bitcast (i32 ()**
getelementptr inbounds (%struct.Sqlite3Config, %
struct.Sqlite3Config* @sqlite3Config, i64 0, i32
13, i32 0) to <2 x i64>*), align 8, !dbg !56905, !
tbaa !11590

Listing 5: A composite instruction. The store instruction in sqlite is
composite, incorporating an embedded bitcast instruction, which in turn
is composite and contains an embedded getelementptr instruction.

6 Implementation

DEEPTYPE is built on LLVM 15.0 in 2.8k lines of C++ code.
It supports C and C++ programs, providing particular advan-
tages for programs that frequently employ composite data
structures. This section delineates the enhancements in accu-
racy and performance from implementation perspective.

6.1 Special Handlings

In addition to the novel approach SMLTA, DEEPTYPE en-
hances accuracy from implementation aspect by addressing
diverse instructions and rare code patterns. We identified four
typical corners cases and applied special handlings to each,
aiming to mitigate inaccuracy resulting from the imprecise
processing of these corner cases.

6.1.1 Composite instructions

A composite instruction encapsulates one or more embed-
ded instructions as operands. When analyzing composite
instructions, DEEPTYPE cannot acquire complete type in-
formation due to the obscured types within the embedded
instructions. Listing 5 demonstrates a composite instruction.
It is a store instruction that encapsulates a bitcast as its
second operand, which itself is also a composite instruction
embedding a getelementptr instruction as its first operand.

To gather complete type information, we employ ordered
trees to represent hierarchical structure of composite instruc-
tions and their embedded instructions, and conduct a system-
atic analysis of instructions within ordered trees from the
lowest to the highest levels, ensuring that the types hidden in
embedded instructions can be utilized to generate complete
multi-layer types when analyzing their parent instructions.
For example, we construct a three-level tree to represent the
instructions in Listing 5. The store instruction occupies the
root node in level 0, the bitcast instruction is situated in the
second child node at level 1, and the getelementptr instruc-
tion resides in the first child node of the bitcast at level 2,
as Figure 3 depicts. The getelementptr instruction returns
a three-layer type i32()* | struct.sqlite3_mutex_methods#0 |
struct.Sqlite3Config#13, which serves as the source type for
the bitcast. So, we record it and the destination type void (int)*
| struct.A as friend types each other in Type-Type Map. This
relationship contributes to accuracy, but it could be missed
without the special handling to composite instructions.

bitcast

store

GEP

<2xi64>

<2xi64>*

Level 0

Level 1

Level 2

Figure 3: Ordered tree of the instructions in Listing 5. The root node rep-
resents the composite instruction store. Its child nodes at level 1 denote the
instruction’s operands. The second operand is another composite instruction
bitcast. The child nodes at level 2 correspond to the operands of bitcast,
among which the first one is a getelementptr instruction.

6.1.2 Anonymous structures

In LLVM bitcode, structs are sometimes anonymous when
the specific names are not necessary or when they help to
optimize the internal representation. This anonymity helps
reduce IR size, but can lead to type mismatches, resulting in
imprecise target identification.

We address this by assigning a unique identifier to each
anonymous struct based on the sequence of member types. 6

This identifier assists in linking anonymous structs to named
equivalents elsewhere in the bitcode, thus mitigating inaccu-
racy caused by mismatches of anonymous structs. If no named
equivalent is found, they are named as struct.anon, which
conservatively matches with any struct, preventing missing
targets resulted from anonymous structs.

6.1.3 Dead functions

The iterative updating and patching of applications often re-
sults in the presence of dead functions, which are declared but
not invoked, thus will not be executed during runtime. The
analysis of instructions within these dead functions generates
redundant type information, leading to false positive targets
and unnecessary performance overhead. To enhance both ac-
curacy and efficiency, our analysis omits dead functions.

6.1.4 Empty Type

In LLVM IR, the notation "{}" is employed to denote an
anonymous struct type when the specific details of the data
structure are unnecessary and subsequently omitted. We name
it as "empty type." Contrary to the anonymous structs dis-
cussed in Section 6.1.2, which merely lack names, the empty
type is anonymous and contains no fields. However, what
it represents can often be inferred from bitcast and other
corresponding instructions in proximity. We categorize the
code patterns involving empty types into two distinct classes,
addressing each class with tailored solutions. Otherwise, the
presence of empty type can impact the precision of our analy-
sis as itself does not match with any struct.

6As of October 2023, the latest version of TypeDive uses similar method
to identify anonymous structs. However, it ignores those anonymous structs
whose names never appear in the bitcode, which may lead to missing targets.



When the empty type serves as the destination type in a
bitcast, we observed that any subsequent utilization of the
empty type in IR corresponds to the usage of the source type
in source code. Accordingly, we record the source type as
a friend type relative to the empty type, mitigating missing
targets that may result from type mismatch. Conversely, when
the empty type is the source type in a bitcast, we observed
that its outer layer types in IR are the outer layer types of the
destination type in source code. Thus, we record the empty
type’s outer layer types as those of the destination type’s,
ensuring that complete multi-layer types are gathered for type
matching and target identification.

6.2 Caches
To diminish the performance overhead, we deploy two caches
aiming at reducing runtime cost without affecting accuracy.
The first one is used to store the verified types of a multi-
layer type so that the exhaustive search algorithm and type
verification process only run once for each multi-layer type.
The second one is used to store identified targets of an indirect
call so that another indirect call with the same multi-layer type
can be quickly resolved by accessing the cache.

7 Evaluation

We evaluate the effectiveness of DEEPTYPE in Section 7.1
and overhead in Section 7.2, comparing it with TypeDive
(commit acb8f4c) since MLTA is the-state-of-the-art approach
in type-based analysis. Additionally, we evaluate the contri-
bution of SMLTA in accuracy in Section 7.3 and present its
security impact through a case study in Section 7.4.

Our evaluation is conducted on linux kernel, 5 web servers
and 14 user applications. The GNU Binutils-2.35 is a collec-
tion of binary tools. We selected 13 among 15 programs as
the discarded ones barely use indirect calls.7 SQLite-3.45.1
is a database engine which contains numerous multi-layer
types. 5 server programs are nginx, httpd, openVPN, proftpd
and sshd. We use Linux-5.1 as the benchmark to show the
scalability of DEEPTYPE.

Experiments are conducted on Ubuntu 20.04 with 8-core In-
tel Core i9-9880H CPU @ 2.30GHz and 16GB DDR4 RAM.
The benchmarks are compiled by WLLVM [54] with LLVM-
15. We use -g -O0 8 flags to ensure that the generated bitcode
contains debug information and type information, and that
the instructions DEEPTYPE analyzes are not optimized out.
Another flag -Xclang -no-opaque-pointers is used to disable
opaque pointers so that pointers’ types are sustained.

7The program sysinfo does not contain any indirect call; The program
elfedit only has 53 indirect calls without complex multi-layer types, showing
exactly the same result for TypeDive and DEEPTYPE.

8This optimization level compiles the fastest and generates the most
debuggable IR code, with which we can determine whether a function pointer
is a local variable or formal parameter.

To compare with TypeDive, we execute both tools on
LLVM-15 and apply dead function elimination on them to
make sure the benchmark bitcode analyzed by DEEPTYPE
and TypeDive are exactly the same. In the experiments, we
deploy 7-layer mappings in Type Lookup Maps, which are
sufficient to archive the multi-layer types in our benchmarks.
Appendix A shows how to determine the number of mappings.

7.1 Effectiveness of DEEPTYPE

The effectiveness of DEEPTYPE is demonstrated by its ability
to narrow down the scope of indirect call targets. We use
Average Number of Targets (ANT) as metric to quantitatively
measure effectiveness, which is defined as:

ANT =
Num(T )
Num(IC)

,

where Num(T ) represents the total number of identified tar-
gets, Num(IC) represents the total number of indirect calls
that have targets. While the metric in TypeDive paper [27] is
also average number, it only takes into account the indirect
calls whose multi-layer types have at least two layers. Their
metric neglects the fact that single-layer types can also benefit
from MLTA, and that some indirect calls have no target iden-
tified because they are not initialized or because DEEPTYPE
and TypeDive miss targets due to inevitable obstacles in im-
plementation, as elaborated in Section 8.1. Therefore, we
define ANT to precisely evaluate the effectiveness. To clarify
false positive (FP) and false negative (FN) subsequently used
in this paper, we define them in Definition 5.

Definition 5 Given an indirect call, a false positive (FP) is a
function erroneously included in the target set contrary to the
ground truth. A false negative (FN) is a function erroneously
excluded from the target set contrary to the ground truth.

Table 4 presents the ANT for the benchmarks tested by
DEEPTYPE and TypeDive, and the reduction rate in ANT
achieved by DEEPTYPE compated to TypeDive. Given that
the binutils programs share numerous library functions, lead-
ing to analogous ANT value, we only list their average ANT.
The details are available in Appendix B. The data in Table
4 indicates that DEEPTYPE reduces the ANT by 43.11% on
average across most benchmarks, including binutils, httpd and
linux. However, DEEPTYPE does not manage to decrease the
ANT for nginx, openvpn and proftpd.

The reduction in ANT can be attributed to SMLTA and
special handlings in DEEPTYPE. SMLTA follows the strong
restriction that checks the entire multi-layer type of an indirect
call to identify targets that match with it. In contrast, TypeDive
employs MLTA which separately resolves each layer of a
multi-layer type and calculates intersection to determine the
target set, potentially leading to FPs. The special handlings in
DEEPTYPE are tailored to address corner cases where type



Program DEEPTYPE TypeDive Reduction Rate

binutils 2.47 10.98 77.50%
sqlite 6.24 8.32 25.00%
nginx 6.38 5.60 -13.93%
httpd 6.23 12.27 49.23%
openvpn 2.35 1.62 -45.06%
proftpd 3.10 2.96 -4.73%
sshd 5.43 5.57 2.51%
linux 9.74 25.17 61.30%

Table 4: Average number of inidrect call targets. This table shows the
average number of indirect call targets, and the reduction rate produced by
DEEPTYPE over TypeDive. binutils shows the average of the 13 programs in
binutils, the detailed data of each is elaborated in Appendix B.

information may be obscured, which enable DEEPTYPE to
extract more accurate type information, thereby reducing FPs.

To validate the reasons for ANT reduction, we conducted
a manual analysis on objcopy, as it contains substantial yet
manageable number of indirect calls. By manually examining
the indirect calls for which DEEPTYPE collects fewer targets
than TypeDive, we confirmed the contributions of SMLTA
and special handlings, and additionally unveiled another factor
contributing to the reduction of ANT.

Field-sensitivity deployed in DEEPTYPE enables the differ-
entiation of distinct members within in a composite data struc-
ture, even if they share the same type, which further refines
indirect call targets. Despite the assertion of field-sensitivity in
TypeDive paper, our manual analysis discovered FPs due to its
field-insensitive. For instance, in a simplified scenario, a func-
tion is confined to i64(i8*)* | struct.bfd_target#13, whereas
an indirect call has multi-layer type i64(i8*)* | struct.bfd_-
target#23, without any type propagation involved. TypeDive
identifies this function as a target because its first and second
layers respectively match i64(i8*)* and struct.bfd_target. By
contrast, field-sensitive DEEPTYPE mitigates such FPs. Thus,
field-sensitivity is another reason for ANT reduction.

Table 4 also shows that DEEPTYPE does not consistently
reduce ANT, particularly in the cases of nginx and openvpn.
There are two reasons for the increasing ANT. First, the adop-
tion of fuzzy type leads to the conservative inclusion of all
potentially matching types. It decreases FNs meanwhile in-
evitably brings in FPs, consequently raising the ANT value.
Second, the special handlings enable DEEPTYPE to extract
more precise type information, diminishing both FPs and FNs.
In situations where the reduction in FNs surpasses that in FPs
within a program, the ANT value increases. Given that the
rising ANT is attributed to the reduction in FNs, it is deduced
that DEEPTYPE is theoretically and practically effective in
refining indirect call targets.

Figure 4 shows the distribution of indirect calls with differ-
ent number of targets in linux kernel. We choose linux kernel
because it is a complicated program that can demonstrate
the distribution patterns as comprehensive as possible. In the
experiment, although a number of indirect calls have no target
according to either DEEPTYPE or TypeDive or both, we ob-
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Figure 4: Distribution of indirect calls with different sizes of target
sets in linux. The y-axis on the left shows number of indirect calls. The
y-axis on the right shows cumulative number of indirect calls. The x-axis
shows indirect call target sets’ sizes ranging from 1 to infinite divided into 9
intervals. DEEPTYPE and TypeDive respectively represents the number of
indirect calls reported by DEEPTYPE and TypeDive. DeepType-Cumu and
TypeDive-Cumu respectively represents the cumulative number of indirect
calls reported by two tools.

serve that DEEPTYPE is capable of finding more valid targets
for more indirect calls, thus DEEPTYPE and DeepType-Cumu
have more indirect calls than TypeDive and TypeDive-Cumu
in most intervals. The main difference between DEEPTYPE
and TypeDive falls in intervals [2,4) and [4,8), the number
of targets represented by these two intervals is much smaller
than the average number of indirect call targets reported by
TypeDive. As the number of indirect call targets increases, the
difference between DEEPTYPE and TypeDive gradually de-
creases and becomes trivial except for interval [64,128), where
DEEPTYPE has more indirect calls, and interval [128,256),
where TypeDive has more indirect calls.

This trend indicates that the ratio of indirect calls with
small target sets is lower in DEEPTYPE. We define small by
different values of threshold in Table 5. A target set is con-
sidered as small when its size is less than the threshold. We
observe that when the threshold is 2 or 4, DEEPTYPE has
lower ratio of indirect calls with small target sets. However,
this does not imply that TypeDive outperforms DEEPTYPE
for these indirect calls. At lower thresholds (i.e., 2 or 4), a
single FP or FN can significantly impact whether an indirect
call is categorized as with a small or large target set. Con-
versely, at higher thresholds, the influence of false reports on
categorizing diminishes. Therefore, the general trend is more
indicative. In most cases, DEEPTYPE demonstrates a higher
ratio of indirect calls with small target sets, underscoring its
effectiveness in refining indirect call targets.

Additionally, we compiled the benchmarks on various op-
timization levels to assess the effectiveness of DEEPTYPE
across these levels. The data presented in Table 6 indicates
that DEEPTYPE reports higher ANT when the benchmarks



Threshold DEEPTYPE TypeDive

2 23.0% 24.1%
4 47.7% 48.5%
8 84.7% 84.5%

16 90.6% 89.5%
32 93.2% 91.5%
64 94.8% 92.4%

128 99.7% 93.4%
256 99.9% 98.1%

Table 5: Ratio of indirect calls with small target sets. The definition of
small depends on the threshold. If the indirect call’s target set size is smaller
than the threshold value, this indirect call is considered as with small target
sets. The last two columns respectively show the ratios of indirect calls with
small target sets in DEEPTYPE and TypeDive.

Program O0 O1 O2 O3

binutils 2.47 3.20 3.20 3.13
sqlite 6.24 6.46 6.48 6.56
nginx 6.38 8.00 8.02 7.99
httpd 6.23 6.23 6.23 6.23
openvpn 2.35 2.80 2.45 2.45
proftpd 3.10 3.10 3.10 3.10
sshd 5.43 5.43 5.43 5.43
linux 9.74 9.74 9.74 9.74

Table 6: The effectiveness of DEEPTYPE on different optimization levels.
This table shows the ANT reported by DEEPTYPE when analyzing bench-
marks respectively compiled with optimization level O0, O1, O2 and O3.

are compiled with more aggressive optimization settings for
the majority of the programs examined. The increasing ANT
can be attributed to the fact that higher optimization levels
tend to optmize away certain instructions that DEEPTYPE
relies upon for analysis, leading to incomplete type informa-
tion being gathered. Consequently, DEEPTYPE produces an
increased number of FPs and FNs. When there is a predomi-
nance of FPs over FNs, the ANT increases.

The stability of ANT values across different optimization
levels for programs such as http, proftpd, sshd, and linux can
be explained by two factors. First, the FPs and FNs caused by
the optimized-out instructions achieve a balance, neutralizing
the impact on ANT. Second, the minimal number of FPs and
FNs does not significantly alter the ANT metric.

Despite the reduced efficacy of DEEPTYPE on higher opti-
mization levels compared to the O0 level, it nevertheless out-
performs TypeDive in those benchmarks where DEEPTYPE
with O0 optimization surpasses TypeDive. This observation
demonstrates that while there is a marginal decrease in effec-
tiveness with higher optimization levels, DEEPTYPE retains
its comparative advantage over TypeDive.

7.2 Performance

DEEPTYPE employs caches to obviate redundant analysis and
improve performance. To evaluate the runtime overhead com-
prehensively, we disabled the caches in DEEPTYPE, resulting
in a variant denoted as DT-nocache. We executed DEEPTYPE,
DT-nocache, and TypeDive on each benchmark for three times

to obtain average execution time, which yields more reliable
statistics as it helps mitigate the impact of hardware condi-
tions and operating system states through averaging.

Figure 5 presents the execution time for each benchmark.
DEEPTYPE significantly outperforms TypeDive, showing a
reduction in overhead ranging from 5.45% to 72.95%, with an
average reduction of 37.02%. DT-nocache also demonstrates
reduced overhead compared to TypeDive, despite TypeDive
is equipped with caches.

To deduce the primary source of runtime overhead and
reveal the reason for DEEPTYPE’s efficiency, we separately
measured the execution time of information collection and tar-
get identification phases, considering the shared general work-
flow of all tools. The experiments were conducted on linux
benchmark, which manifests noticeable differences among
three tools. According to Figure 6, the percentages of run-
time overhead incurred during target identification exhibit
a progressive increase among DEEPTYPE, DT-nocache, and
TyepDive, standing at 20.6%, 44.2%, and 65.0%, respectively.
Thus, the lower overhead of DEEPTYPE should owe to the
target identification phase, wherein DEEPTYPE straightfor-
wardly deals with the entire multi-layer type of each indirect
call. In contrast, TypeDive addresses each two-layer type
within the multi-layer type and calculates intersections, incur-
ring additional runtime overhead. The fact that DEEPTYPE
refines indirect call targets also indicates that TypeDive con-
sumes extra computational resources on FPs.

An additional observation reveals that the distinction in run-
time overhead is evident in binutils, sqlite and linux, whereas
it is negligible in the five server programs. The reason for this
distinction is the higher prevalence of multi-layer types with
more layers in binutils, sqlite and linux as illustrated in Figure
7. The efficiency advantage of DEEPTYPE over TypeDive is
primarily attributed to DEEPTYPE’s one-time resolution on
the entire multi-layer type, in contrast to the laborious resolu-
tion in TypeDive for each two-layer type. It is noteworthy that
a multi-layer type may consist of multiple two-layer types.
Consequently, the benchmarks containing a greater number
of multi-layer types with more layers amplify the runtime
overhead discrepancy between DEEPTYPE and TypeDive.

Typically, memory overhead is not a main concern in static
analysis, as tools that offer efficient performance without com-
promising precision are often favored. We still measure the
memory overhead of DEEPTYPE using Massif tool in Val-
grind [31] tool suite with –pages-as-heap=yes option en-
abled, to measure all the memory used, and compare it with
TypeDive for a thorough performance assessment.

Figure 8 shows the memory overhead of DEEPTYPE and
TypeDive. Regarding user applications and server programs
in the benchmarks, both tools exhibit memory overhead below
150 MB. However, in the context of the Linux kernel, both
DEEPTYPE and TypeDive demonstrate higher memory over-
heads ranging from 4.2 GB to 4.3 GB. This discrepancy is
attributed to the larger size of kernel program, which involves
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Figure 5: Execution time of DEEPTYPE, DT-nocache and TypeDive. DT-nocache represents DEEPTYPE without caches deployed. For each benchmark, we
plot a bar chart to depict the execution times of DEEPTYPE, DT-nocache, and TypeDive, and the y-axis scale of which is adjusted to encompass the full data
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Figure 6: Runtime overhead distribution of DEEPTYPE, DT-nocache and
TypeDive. DEEPTYPE and TypeDive follow the same general workflow that
contains two phases: 1) collect information and record it in data structures,
2) analyze indirect call sites and recorded information to identify targets.

more multi-layer types. As a result, both tools record a greater
volume of type information, leading to increased sizes of data
structures and consequently consuming more memory spaces.

DEEPTYPE shows lower memory overhead than TypeDive,
while the subtle difference between two tools remains consis-
tent across all benchmarks. This consistency is attributed to
the comparable memory space occupied by the data structures
in two tools. Although DEEPTYPE records entire multi-layer
types, which have larger sizes than two-layer types, it allocates
fewer entries in maps for storage. The difference is due to
the additional memory space utilized in TypeDive for record-
ing escaping types, which is designed to overcome the third
challenge, as elaborated in Section 2. In contrast, DEEPTYPE
adopts the exhaustive search algorithm which does not con-
sume so much memory space as escaping types.

7.3 Contribution of SMLTA in Accuracy

As described in Section 7.1, DEEPTYPE is capable to narrow
down the scope of indirect call targets. This capability owes to
SMLTA and special handlings to corner cases. To further in-
vestigate the impact of SMLTA on effectiveness, we disabled
the special handlings in DEEPTYPE, resulting in a variant
denoted as DT-noSH. Different ANT values of DEEPTYPE
and DT-noSH exhibit the impact of special handlings, thus
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Figure 7: Number of multi-layer types with different layer counts. The
y-axis on the right shows the number of multi-layer types in linux while the
y-axis on the left shows the number of multi-layer types in other benchmakrs.

revealing the contribution of SMLTA.
Table 7 presents the ANT reported by DEEPTYPE and DT-

noSH. The ANT of DT-noSH is close to that of DEEPTYPE,
indicating that disabling the special handlings has minimal im-
pact on the effectiveness of DEEPTYPE, which reveals the pri-
mary role of SMLTA in accuracy improvement. The rationale
behind the statistics is that the special handlings are specif-
ically implemented to address corner cases. Without them,
DEEPTYPE generates slightly more FPs and FNs. Given the
definition of ANT, minor fluctuations in the total number of
indirect call targets do not significantly alter ANT value when
the volume of indirect calls is relatively high. Nonetheless,
these special handlings remain crucial, as they play a vital role
in mitigating the FPs and FNs that are orthogonal to SMLTA.

Recall that there are four special handlings. First, the sys-
tematic analysis of composite instructions facilitates the
generation of complete multi-layer types. Among all the
benchmarks, nginx and linux exhibit the most significant im-
provement owing to this special handling, given their rela-
tively higher prevalence of composite instructions. Second,
linking anonymous structs with named equivalents enables
DEEPTYPE to accurately recognize and match multi-layer
types. We observe that openvpn and linux obtain the most ben-
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Figure 8: Memory overhead of DEEPTYPE and TypeDive. The scales
from 150 to 4250 on y-axis are cut out because there is a gap between the
memory overheads of linux and other benchmarks. DEEPTYPE always has
lower memory overhead than TypeDive while the difference between two
tools is consistently subtle.

Program DEEPTYPE DT-noSH DT-weak

binutils 2.47 2.48 2.70
sqlite 6.24 6.33 6.97
nginx 6.38 8.62 12.99
httpd 6.23 6.23 7.66
openvpn 2.35 2.39 2.35
proftpd 3.10 3.13 4.22
sshd 5.43 5.42 5.43
linux 9.74 9.72 13.09

Table 7: ANT values of DEEPTYPE, DT-noSH and DT-weak. DT-noSH
exhibits the contribution of SMLTA. DT-weak shows the impact of storing
entire multi-layer types in Type-Func Map.

efit from this special handling compared to other benchmarks.
Third, DEEPTYPE eliminates dead functions to discard redun-
dant information, thereby mitigating FPs. All benchmarks,
except for httpd and openvpn, benefit from this special han-
dling. Last, DEEPTYPE handles empty types accordance to
specific code patterns. Due to the infrequent occurrence of
the empty type, its impact on ANT is negligible.

Although the comparison between DEEPTYPE and DT-
noSH reveals the significant contribution of SMLTA to effec-
tiveness, we also implemented a weak version of DEEPTYPE,
denoted as DT-weak, which stores two-layer types in Type-
Func Map, to help examine the impact of recording entire
multi-layer types. As depicted in Table 7, DT-weak demon-
strates a higher ANT than DEEPTYPE across most bench-
marks, indicating that recording entire multi-layer types,
rather than two-layer types, effectively refines indirect call tar-
gets. The difference between two tools is particularly evident
on nginx and linux, which contain relatively more complex
multi-layer types than other benchmarks. Note that, DT-weak
still benefits from SMLTA because only the method of record-
ing multi-layer types in Type-Func Map has been modified,
while other SMLTA designs, such as multi-layer mappings,
continue to play a role in filtering out FPs.

1 void track_set_index (...) {
2 ...
3 track->index[i] = ind;
4 }
5

6 static gboolean get_file_metadata (...) {
7 TrackerExtractInfo *info;
8 ...
9 tracker_extract_info_unref(info);

10 ...
11 }
12

13 gboolean g_option_context_parse (...) {
14 ...
15 if (!(* group->pre_parse_func) (context, group,

group->user_data, error))
16 ...
17 }

Listing 6: CVE-2023-43642 vulnerable code. Line 3 is vulnerable to out-
of-bounds access. An exploit for this vulnerablity can overwrite a function
pointer in glib to gain code execution.

7.4 Case Study
While SMLTA is a fundamental tool applicable across various
security-related fields (e.g., static bug detection, symbolic ex-
ecution, fuzzing, and etc.), we demonstrate its security impact
through the example of CFI enforcement.

CVE-2023-43641 [11] is an out-of-bounds access that en-
ables arbitrary write in libcue. As detailed in Listing 6 at
line 3, both the value of index i and ind can be controlled
by attacker. By setting the index i negative, an attacker can
achieve arbitrary write through preparing the value of ind.
The exploit [2] utilized this vulnerability to corrupt a function
pointer in glib (cross-referenced by libcue) to achieve arbi-
trary code execution. To be specific, the exploit overwrites
the heap object info (line 7), which is allocated in a func-
tion invoked by track_set_index (line 1). This overwrite
enables the corruption of function pointer pre_parse_func
(line 15) in glib, and the corrupted function pointer is sub-
sequently used to call the initable_init function, which
behaves similarly to the system function, enabling arbitrary
code execution.

Similar to many typical CVE exploits, this exploit assumes
Control Flow Integrity (CFI) is not deployed. The function
pointer pre_parse_func has a type mismatch with the target
function initable_init, making the exploit preventable
by both MLTA and SMLTA. However, this does not imply
that the vulnerability can be completely mitigated by either
MLTA or SMLTA, as attackers may still conduct exploits by
corrupting alternative function pointers.

We further examined glib and revealed 5 function pointers
that can bypass MLTA, see Table 8. MLTA fails to prevent
the exploits that corrupting these function pointers because
it identifies the function initable_init as a valid target
for these function pointers, though it is a FP in fact. This FP
can be attributed to MLTA’s approach of splitting multi-layer
types, which confines the function initable_init respec-
tively to gboolean (Ginitable*, GCancellable*, GError**)*



Function Pointers MLTA SMLTA

callback ✗ ✓
callback* ✗ ✓
traverse_func ✗ ✓
func ✗ ✓
predicate ✗ ✓

Table 8: The capability of MLTA and SMLTA in preventing exploits. The
listed function pointers, located in glib, can be corrupted through the vulner-
ability. MLTA fails to prevent the exploits through the 5 function pointers
while SMLTA can prevent these exploits. To differentiate two function point-
ers named "callback" in separate functions, one is denoted as "callback*".

and struct._GInitableIface with index 1, weakening the re-
striction of multi-layer type matching.

For example, traverse_func in Table 8 has type
gboolean (gpointer*, gpointer*, gpointer*)*, which matches
with gboolean (Ginitable*, GCancellable*, GError**)*
due to information flow in glib. Thus, MLTA identifies
initable_init as a potential target, enabling attackers to
rewrite the function pointer with the address of initable_-
init and achieving arbitrary code execution.

In contrary, SMLTA is able to prevent these exploits be-
cause it strictly confines initable_init to its entire multi-
layer type gboolean (Ginitable*, GCancellable*, GError**)*
| struct._GInitableIface#1, which does not match with any
function pointer in Table 8. Consequently, SMLTA effectively
reduces the attack surface of control-flow hijacking attacks
utilizing this vulnerablity. By limiting the attacker’s ability
to corrupt function pointers, SMLTA offers a higher level of
security compared to MLTA in CFI implementation.

8 Discussion

8.1 Soundness
This section discusses the soundness of SMLTA. In theory,
SMLTA belongs to type-based analysis, the soundness of
which has already been proved [30, 33, 37, 53, 59]. In general,
the static analysis in DEEPTYPE is flow-insensitive, indicat-
ing that it does not track the sequences of instructions or
data-flow between basic blocks, but purely collects type in-
formation, which does not yield any FN.

Specifically, SMLTA contains 4 novel designs, none of
which produces FNs. First, fuzzy type and fuzzy index stand
for uncertain layers and indexes. They match with any type
and index to ensure that no potential targets can be missed.
Second, multi-layer mappings are used to archive the col-
lected multi-layer types without any omission. It does not
produce any FN because all recorded multi-layer types can
be retrieved through querying the mappings. Third, the rela-
tionships among multi-layer types involved in an information
flow chain is conservatively recorded. Any potential informa-
tion flow between two multi-layer types is considered when
identifying targets. Finally, the exhaustive search algorithm
discovers all friend types that can share associated functions

with the multi-layer type of the indirect call, ensuring all po-
tential targets being identified.

8.2 Limitations
The implementation of DEEPTYPE does not robustly address
all corner cases in real-world programs. Besides the ones ad-
dressed in Section 6, some corner cases are out of our scope.
For example, LLVM IR only contains type information but
omits instantiated values of the members in global variables
with composite type. If a function pointer as a member of a
global variable is initialized at the global scope, the function
assigned to it is apparent in source code but does not appear
in the corresponding IR, thus does not appear in bitcode.9

Given this fact, DEEPTYPE is unable to record the mappings
between multi-layer types and functions for such initialization
instructions, resulting in missing targets for involved indirect
calls. Take binutils programs as another example, some indi-
rect call targets are functions in the GNU linker, LD, while we
use Clang to compile the programs which uses LLD as linker.

Albeit the accuracy improvement contributed by SMLTA
and special handlings, DEEPTYPE still exhibits deficiencies in
terms of accuracy. For small programs that contain few com-
plicated multi-layer types, DEEPTYPE is limited in reducing
FPs compared to TypeDive meanwhile possibly yielding extra
FPs instead due to the conservative design and implementa-
tion choices for soundness purpose. In addition, if several
function pointers have the same multi-layer type but points to
different functions, SMLTA produces FPs in this scenario.

In evaluation aspect, there is no standard scale available to
calculate the statistics such as FP rate, FN rate and accuracy,
due to the absence of ground truth. Although “pseudo ground
truth” [24] is a feasible solution, it highly depends on the
precision of dynamic analysis adopted. If the dynamic anal-
ysis result is not proved to be extremely close to the ground
truth, the numerical data of soundness and precision relative
to the pseudo ground truth is not convincing subsequently.
We use ANT as metric to reflect the accuracy improvement.
But it is convincing only in the context that both SMLTA and
MLTA pertain to type-based analysis and the novel designs in
DEEPTYPE does not produce FNs.

8.3 Future Work
SMLTA generates FPs when multiple functions share the
same multi-layer type with an indirect call. This is a limitation
intrinsic to type-based analysis that relies solely on type verifi-
cation. To enhance accuracy, we intend to integrate data-flow
analysis with SMLTA, assessing both value and multi-layer
type to further constrain potential targets, thereby reducing the
FPs inherent to SMLTA. To maintain a balance between accu-
racy and performance, this data-flow analysis will be designed
to be lightweight, focusing on intra-procedural analysis.

9Bitcode is a binary encoding of LLVM IR.



Motivated by the absence of a standard and reliable metric
for comparing various approaches, we also plan to develop a
benchmark that includes a comprehensive ground truth. This
ground truth will encompass, but is not limited to, indirect
call targets, alias pointers, and value sets. This will enable
a wide range of basic tools used in both static and dynamic
analysis to evaluate their effectiveness, identify the fundamen-
tal reasons for any inaccuracies, and enhance their design and
implementation accordingly.

9 Related Work

Conservative solutions. Zhang et al. propose a protection
mechanism called CCFIR [65] which implements a policy
pertaining to indirect control transfers. It prohibits any in-
direct calls/jumps to locations other than those included in
a white-list, which is derived from the relocation tables of
ASLR [55] that provides absolute addresses of valid functions.
Similarly, Zhang and Sekar [67] conservatively count all valid
functions as targets given the assumption that source code is
not available. These solutions are exceedingly conservative
and may produce numerous false positives targets.
Type-based analysis. In cases where the source code of a
program is available, types of function pointers are utilized
to deduce potential targets. Each indirect call is restricted to
being directed towards only the functions with the same type.
Tice et al. present VTV and IFCC that provide forward-edge
CFI protection respectively for GCC and LLVM [49]. VTV
conducts a validation process to ensure the correctness of the
vtable pointer used for a virtual call by confirming the vtable
pointer to be used for the indirect call points either to the
vtable for the static type of the object, or to a vtable for one of
its descendant classes. IFCC forces a function pointer into the
right function-pointer set in jump tables to mitigate CFI viola-
tions and each function-pointer set has a specific function type
signature. Niu and Tan present MCFI [34] where an indirect
call is allowed to call any address-taken function whose type
is structurally equivalent to the function pointer’s type. Victor
et al. propose TypeArmor [52] to reduce the number of targets
for indirect calls where function type and argument number
is checked to identify valid targets. MLTA [27] utilizes multi-
layer type, which includes function type signature and type
of composite data structures, to significantly refine indirect
call targets. The majority of the prior work on resolving C++
virtual functions depend on class hierarchy analysis combined
with object type information [15, 21, 40, 49, 64]. These ap-
proaches employ an expanded single-layer type to identify
targets, but our approach can further improve the accuracy by
utilizing types of multiple involved data structures.
Data tracking Analysis. Ge et al. utilize taint analysis in their
fine-grained CFI to identify targets for kernel software [14].
They begin with a function and taint all function pointers
that are initialized with the function or the tainted function
pointers. If a function pointer is in a structure, they taint the

field for all memory objects of that structure’s type. This pol-
icy enables fine-grained CFI to leverage the information of
directly related data structure instead of only considering the
function pointer itself, but it is still less precise than SMLTA
which uses type information of all involved data structures to
restrict targets. Kim et al. use block-based pointer analysis
(BPA) [23] to identify indirect call targets, which generates
memory blocks for heaps, stack frames, and global data sec-
tions following specific rules and perform pointer analysis in
each memory block to infer points-to relationships. They also
upgrade BPA by offset-sensitivity in BinPointer [24], which
tracks the offset in each memory block for more fine-grained
pointer analysis. Compared with strong MLTA, such approach
is deficient in handling type casting, which will cause missing
targets. Another limitation is that it does not support C++. CF-
GAccurate [46] interleaves four techniques including forced
execution, backward slicing, symbolic execution and value
set analysis to construct CFG, which is precise at the expense
of high performance overhead.
Dynamic Analysis. Many other solutions [12, 13, 16, 35, 51]
use dynamic analysis which relies on runtime information
to identify indirect call targets. These solutions address a
distinct problem area, which is the assurance of the validity
of a runtime target. Conversely, our work statically deduces
the range of potential targets for each indirect call.

10 Conclusion

In this paper, we have introduced strong multi-layer type
analysis (SMLTA), a novel approach in refining indirect call
targets, that thoroughly utilizes type information provided by
multi-layer types. It treats the entire multi-layer type as a basic
unit for information storage and type verification to improve
accuracy. SMLTA resolves relationships between multi-layer
types, exhaustively discovers friend types for indirect calls,
and employs fuzzy type to overcome the challenges in indirect
call target identification using multi-layer types. Additionally,
multi-layer mappings are deployed to hierarchically archive
multi-layer types for quick access. We implemented SMLTA
in DEEPTYPE, which is equipped with special handlings to
address diverse code patterns and corner cases. DEEPTYPE
is scalable to large applications with superior effectiveness
as well as performance. The experiment results showed that
DEEPTYPE narrows down the scope of indirect call targets by
43.11% on average across most benchmarks, reduces runtime
overhead by 37.02% on average and consumes less memory
compared to TypeDive. A case study in CVE exploit demon-
strated that SMLTA is more powerful than MLTA in reducing
attack surface and preventing exploits. However, the intrin-
sic limitation of type-based analysis can still produce false
positive targets. We leave it as future work to further improve
accuracy through lightweight data-flow analysis.
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Appendix

A Multi-Layer Mappings
To efficiently organize and access the collected multi-layer types, we use
multi-layer mappings to hierarchically archive them as described in Section
4.2. The question is how many mappings are sufficient in Type Lookup Maps?
The number should neither be too large to guarantee the performance of
DEEPTYPE nor too small to hold the multi-layer types. So, we decide the
number of mappings conforming to the multi-layer types in benchmarks.

Table 9 shows the number of multi-layer types with different layer counts.
Across all benchmarks, the multi-layer types in them contain at most 8 layers,
which means 7-layer mappings are sufficient to record these multi-layer types.
Thus, we adopt 7-layer mappings in our implementation. If multi-layer types
with more than 8 layers are common in other programs, more mappings can
be deployed in DEEPTYPE to supply extra precision in practice.

Programs Total <=8 layers > 8 Layers

binutils 311* 311* 0
sqlite 220 220 0
nginx 101 101 0
httpd 88 88 0
openvpn 43 43 0
proftpd 88 88 0
sshd 46 46 0
linux 5,447 5,447 0

Table 9: Number of multi-layer types with different layer counts. 311*
indicates the average of binutils programs.

B Binutils Test results
Binutils programs consist of similar indirect calls as they utilize shared library
function, thus displaying similar results. For someone who is interested in,
we provide detailed data for each individual program in Table 10.

Program DEEPTYPE DT-weak TypeDive

addr2line 2.38 2.62 8.60
ar 2.45 2.69 12.73
bfdtest1 2.38 2.62 12.89
bfdtest2 2.38 2.63 12.89
cxxfilt 2.37 2.62 8.64
nm-new 2.48 2.72 13.01
objcopy 2.63 2.87 13.08
objdump 2.95 3.19 11.26
ranlib 2.45 2.69 12.73
readelf 2.29 2.29 2.30
size 2.39 2.64 12.95
strings 2.37 2.62 8.64
strip-new 2.63 2.87 13.08

Table 10: Average number of targets for each program in binutils.
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