
DeepType: Refining Indirect Call Targets
with Strong Multi-layer Type Analysis

Tianrou Xia, Hong Hu, Dinghao Wu

August 16, 2024

Background
• Indirect calls are common in C/C++ programs

1

• Mozilla Firefox • Google Chrome

• LibreOffice • Apache HTTP Server

• Determining the target of an indirect call is non-trivial

Background
• Existing approaches

2

• Type-based analysis
• Check function signatures

Time-consuming

High false positive rate

struct A void (int)*struct B

• E.g., b->a->ptr

Multi-layer type: void (int)*|struct.A|struct.B

• Check if the multi-layer types of
functions and indirect calls match

improved

[1] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th International Conference on Compiler Construction (CC
2016). Association for Computing Machinery, New York, NY, USA, 265–266.
[2] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS '19). Association for Computing Machinery, New York, NY, USA, 1867–1881.

• Data-based analysis
• Track data-flow

[1] • Multi-Layer Type Analysis (MLTA)
• Leverage composite type information

[2]

Precise

Efficient

Challenges
•Multi-layer Type Matching

Information flow

Function propagation

Type unmatching

Missing targetsUnsoundness

3

① Type transformation

② Parameter passing

Motivation
•MLTA splits multi-layer types

Weaken the restrictions
provided by multi-layer types

4

• Record mappings between split
types and associated functions

• Resolve each layer and
calculate intersection of their
target sets

Produce false positive target(s)

Line 28 real target: write_to_shared_mem

Strong Multi-layer Type Analysis (SMLTA)
• Keep strong restrictions provided by multi-layer types

5

• Record mappings between entire multi-layer types and associated
functions in Type-Func Map

• Resolve the entire multi-layer type of each indirect call

✓ Line 28 real target: write_to_shared_mem

DeepType
•Workflow

6

Program
bitcode

Phase 2:

Target
Identification

I-call 1 loc. …
Target set …

I-call 2 loc. …
Target set …

……

Type-Func Map

Type-Type Map

Phase 1:

Information
Collection

Type Lookup Maps

Type-Func Map

Type-Type Map

Type Lookup Maps

Phase 1 – Information collection
• Type relationship resolving

7

• Type assignment Source type Destination typeInformation
flow

• Type casting Source type Destination typeInformation
flow

• Friend type
• A is a friend type relative to B if there exists information flow

from A to B

• Record type relationships in Type-Type Map

→ Address type transformation

Phase 1 – Information collection
•Multi-layer type organization

8

• Provide efficient access and retrieval

• Record multi-layer types in Type Lookup Maps
• Multi-layer mappings

Phase 2 – Target Identification
• Fuzzy type

9

• Mark the type of uncertain layer(s)

fp
fp|struct.A
fp|array
fp|struct.B|struct.X
…

Matches with

• Match with any type

fp | ?fp | fuzzy type

→ Address parameter passing

Phase 2 - Target Identification

10

3. Generate friend types for the entire multi-layer type

2. Query Type-Type Map for friend types relative to each fragment
• A fragment is one or multiple continuous layers in a multi-layer type
• Use adapted breadth-first search to exhaustively search for friend types

4. Look for matched types in Type Lookup Maps

5. Query Type-Func Map to achieve valid targets

1. Ascertain the multi-layer type of the indirect call

Optimization
• Special handlings
• Address corner cases
• Reduce FPs and FNs

11

• Caches
• Store the result of resolved

multi-layer types

Precision improvement Efficiency improvement

Evaluation

• Compare with TypeDive (MLTA prototype)

12

• Experiment environment
• Ubuntu 20.04 (64bit)

• 8-core Intel Core i9-9880H CPU @ 2.30GHz

• 6GB DDR4 RAM

• Benchmarks
• Linux kernel: Linux-5.1

• 5 severs: Nginx, httpd, openVPN, proftpd, sshd

• 14 user applications: binutils-2.35, SQLite-3.45.1

Evaluation
• Effectiveness of DeepType

✓
✓

✓

✓
✓

• DeepType reduces the ANT
by 43.11% on average

❍

❍
❍
• DeepType does not

consistently reduce ANT

13

• SMLTA and special handling
reduce FPs

• The special handling reduces FNs
• TypeDive produces FNs

• Metric: Average Number of Targets (ANT)
Num(T): Total number of targets

Num(IC): Total number of indirect calls with targets

DeepType is more effective than TypeDive

Evaluation
• Contribution of SMLTA

14

• DT-noSH: No special handling
• Reveal the significant impact of

SMLTA on effectiveness

• DT-weak: Store split types
• Show the impact of storing entire

multi-layer types in reducing FPs

DEEPTYPE TypeDi(e
0

5

10

E)
ec
ut
io

Ti
m
e
(s
ec
)

3.41

5.76

bi utils

DEEPTYPE TypeDi(e
0

5

10

E)
ec
ut
io

Ti
m
e
(s
ec
)

1.98

7.32

sqlite

DEEPTYPE TypeDi(e
0

2

4

6

E)
ec
ut
io

Ti
m
e
(s
ec
)

1.15 1.56

 gi)

DEEPTYPE TypeDi(e
0

2

4

6

E)
ec
ut
io

Ti
m
e
(s
ec
)

0.76 1.06

httpd

DEEPTYPE TypeDi(e
0

2

4

6

E)
ec
ut
io

Ti
m
e
(s
ec
)

1.04 1.1

ope (p

DEEPTYPE TypeDi(e
0

2

4

6

E)
ec
ut
io

Ti
m
e
(s
ec
)

0.91 1.2

proftpd

DEEPTYPE TypeDi(e
0

2

4

6

E)
ec
ut
io

Ti
m
e
(s
ec
)

0.67 0.73

sshd

DEEPTYPE TypeDi(e
0

50

100

E)
ec
ut
io

Ti
m
e
(s
ec
)

65.51

118.22
li u)

DEEPTYPE TypeDi(e

Evaluation
• Performance – execution time

• DeepType outperforms TypeDive, showing an average reduction of 37.02%.

15

DeepType is more efficient than TypeDive

Conclusion
• We introduced strong multi-layer type analysis (SMLTA), a

novel approach in refining indirect call targets.

• We implemented a prototype, DeepType, which is equipped with
special handling to address diverse code patterns.

• DeepType is scalable to large applications with superior effectiveness
as well as performance over TypeDive.

16

Artifact

• Available at https://github.com/s3team/DeepType

17

https://github.com/s3team/DeepType/tree/AE

Thank you

