
Preventing Use-After-Free Attacks with Fast Forward Allocation

Brian Wickman† Hong Hu‡ Insu Yun Daehee Jang
JungWon Lim Sanidhya Kashyap∗ Taesoo Kim

†GTRI ‡PennState GeorgiaTech ∗EPFL

Abstract
Memory-unsafe languages are widely used to implement crit-
ical systems like kernels and browsers, leading to thousands
of memory safety issues every year. A use-after-free bug is
a temporal memory error where the program accidentally
visits a freed memory location. Recent studies show that use-
after-free is one of the most exploited memory vulnerabilities.
Unfortunately, previous efforts to mitigate use-after-free bugs
are not widely deployed in real-world programs due to either
inadequate accuracy or high performance overhead.

In this paper, we propose to resurrect the idea of one-time
allocation (OTA) and provide a practical implementation with
efficient execution and moderate memory overhead. With one-
time allocation, the memory manager always returns a distinct
memory address for each request. Since memory locations
are not reused, attackers cannot reclaim freed objects, and
thus cannot exploit use-after-free bugs. We utilize two tech-
niques to render OTA practical: batch page management and
the fusion of bump-pointer and fixed-size bins memory alloca-
tion styles. Batch page management helps reduce the number
of system calls which negatively impact performance, while
blending the two allocation methods mitigates the memory
overhead and fragmentation issues. We implemented a proto-
type, called FFmalloc, to demonstrate our techniques. We eval-
uated FFmalloc on widely used benchmarks and real-world
large programs. FFmalloc successfully blocked all tested use-
after-free attacks while introducing moderate overhead. The
results show that OTA can be a strong and practical solution
to thwart use-after-free threats.

1 Introduction

Memory-unsafe languages, like C and C++, are widely used to
implement key programs such as web browsers and operating
systems. Therefore, we have seen innumerable memory safety
issues detected and abused in these systems [20]. Among all
memory safety issues, the use-after-free bug is one of the most
commonly reported and exploited security problems [15, 20].

A use-after-free bug occurs when a program tries to defer-
ence a dangling pointer that points to a freed object. The
consequence of a use-after-free bug depends on the imple-
mentation of the memory allocator and the following code
of the program. In the worst case, attackers may reclaim the
freed object and update its content with malformed values.
When the program accidentally uses the content, its behavior
will be under the control of attackers, potentially allowing
arbitrary code execution or sensitive information leakage.

Researchers have proposed different methods to detect or
mitigate use-after-free bugs. The first method is to label each
memory chunk to indicate whether it is allocated or freed.
Before each memory access, a label is checked to detect after-
free use [21–23, 28, 33]. However, this approach introduces
high overhead to program execution and thus has not been
widely adopted in released applications. A second way is
to actively invalidate dangling pointers once the object is
freed, like setting them to a NULL value [7,15,35,37]. These
tools must maintain the inverse points-to relationship between
an object and its references, which significantly slows down
the protected execution. As a special case, Oscar [7] makes
the freed objects inaccessible to achieve the same goal. A
more recent approach ignores the normal free request, and
utilizes spare CPU cores to independently identify and release
garbage objects (i.e., objects without any reference) [2,18,30].
This method requires extra computation resources, and may
have limited scalability.

The limitations of previous proposals led us to rethink the
defense against use-after-free bugs. Fundamental to exploit-
ing a use-after-free bug is the attackers’ ability to reclaim the
freed memory and modify its content before the program uses
it. As almost all memory managers reuse released memory
for subsequent requests to improve efficiency [10, 12, 13],
attackers can usually acquire the freed memory with trivial
effort [9, 34, 36]. For example, glibc caches freed chunks in
multiple linked lists (called bins) and reuses them to quickly
respond to future requests. However, if a memory manager
does not reuse any released memory, attackers will lose the
ability to control the memory content associated with a dan-

gling pointer. The program may run normally or crash (e.g.,
the freed memory has been unmapped), but all exploitation
of use-after-free bugs will fail.

Inspired by this observation, we propose to resurrect one-
time allocation (OTA) to prevent successful exploitations of
use-after-free bugs. For any virtual address, an OTA allocator
will assign it to the program only once and will never reuse
it for other memory requests. In other words, every request
will get a distinct memory chunk and no one will ever overlap
with another. Note that an OTA allocator does not eliminate
use-after-free bugs, but renders all of them unexploitable.

Although the idea is straightforward, developing a practical
OTA manager is not easy. We identify three challenges that
have to be handled properly. First, OTA may introduce high
memory overhead. As the kernel manages memory at the
page level (i.e., 4096 bytes by default), OTA cannot release
the page as long as any byte is in use. In the worst case,
it may waste 4095 bytes per page. Second, OTA is limited
by the number of VMA structures in kernel. The Linux kernel
creates a VMA structure for each set of continuous pages, and
allows up to 65535 VMAs for each process. As OTA does not
reuse memory, the in-use pages will scatter sparsely, until the
process reaches the VMA limit. After that, the kernel cannot
release any pages that would split a VMA into two. Finally, OTA
may slow down the execution due to frequent system calls.
Without address reuse, the program will continuously exhaust
the pages allocated from the kernel, and have to make more
system calls (e.g., mmap) to request new pages.

Our solution to these challenges is two-fold. First, we blend
two allocation strategies to reduce the waste of memory and
mitigate the VMA issue. For small requests, we use a size-based
binning allocator to group similarly sized objects together;
for large requests, we handle them in a continuous manner
from a discrete region. By coalescing small allocations, we
avoid the worst-case memory usage: tiny islands in between
large allocations that hinder releasing pages and lead to heavy
overhead. Meanwhile, continuously allocating large objects
limits excess allocation to no more than minimal padding to
comply with alignment requirements. Similar solutions are
adopted by existing memory managers. However, we demon-
strate that it makes OTA, a commonly believed impractical
method, possible and useful. Second, we strategically batch
memory mapping and unmapping to minimize the number
of system calls. When FFmalloc requests memory from the
kernel, it will ask for a much larger region than immediately
necessary to handle the application’s requirement. The addi-
tional amount of memory is cached internally to answer future
requests. When the program frees memory, FFmalloc will not
immediately invoke system calls to release the region. Instead,
it will wait for several sequential freed pages and return them
together with one system call.

We implemented Fast Forward Memory Allocation
(FFmalloc), a prototype OTA, in 2,117 lines of C code.
FFmalloc requests 4MB memory at a time from the kernel,

and only releases freed memory when there are eight or more
contiguous pages. For memory requests of less than 2K bytes,
we use the binning allocator to group them together. For larger
requests, we simply return available memory sequentially.

We applied FFmalloc on common benchmarks and real-
world programs to understand its practicality and security.
Specifically, we used FFmalloc to protect nine programs with
eleven exploitable use-after-free bugs. With the protection
of FFmalloc, all exploits failed. Upon manual inspection, we
confirmed no overlap between any allocated objects. This
result shows that FFmalloc can effectively prevent use-after-
free attacks. To measure the overhead, we tested FFmalloc
on SPEC CPU2006 benchmarks, the PARSEC 3 benchmark
suite, the JavaScript engine ChakraCore, and the web server
NGINX. On average (geometric mean), FFmalloc introduces
2.3% CPU overhead and 61.0% memory overhead to SPEC
CPU2006 benchmarks. By comparison, the state-of-the-art
tool, MarkUs, adds 14.8% CPU overhead and 28.1% mem-
ory overhead to the same set of benchmarks. Meanwhile,
FFmalloc has 33.1% CPU overhead and 50.5% memory over-
head on PARSEC 3 benchmarks, while MarkUs introduces
42.9% CPU overhead and 13.0% memory overhead. FFmalloc
brings negligible overhead to ChakraCore, and provides simi-
lar performance as other secure allocators. These results show
that FFmalloc is a practical solution to protect real-world
programs against use-after-free exploits.

In summary, we make the following contributions:
• We propose to revive the idea of one-time allocation

(OTA) to prevent use-after-free attacks. OTA provides
efficient protection with a strong security guarantee.

• We designed and implemented FFmalloc, the first prac-
tical prototype of OTA, which supports both Linux and
Windows applications.

• We extensively evaluated FFmalloc. The results demon-
strate that OTA can be a practical way to protect real-
world applications against use-after-free attacks.

We will release the source code of FFmalloc at https:
//github.com/bwickman97/ffmalloc.

2 Problem Definition

2.1 A Motivating Example
Figure 1 shows an example of the use-after-free vulnerabil-
ity. The code defines two structures: Array to hold the user
input, and Parser for the parser function. Both structures
have the same size while Parser contains a function pointer
handler. Function handle_net_input first dynamically allo-
cates an instance of Parser and initializes its members, like
setting the handler to function net_parser. Then, it tries to
get a command from the client (line 18). If the command
is PARSE, it will allocate an instance of Array (line 23), and
will read untrusted user input from the client to the internal
buffer of array (line 24). Finally, it invokes the parsing func-

https://github.com/bwickman97/ffmalloc
https://github.com/bwickman97/ffmalloc

1 typedef struct {long used; char buf[24];} Array; // 32-byte
2

3 typedef struct { // 32-byte
4 long status; void *start, *current;
5 int (*handler)(void *buf);
6 } Parser;
7

8 enum Command { INVALID, PARSE, ... };
9 int net_parser(void *buf);

10

11 int handle_net_input(int client_fd) {
12 Parser *parser = (Parser *)malloc(32); // allocation
13 parser->status = INIT;
14 parser->start = parser->current = NULL;
15 parser->handler = &net_parser;
16

17 enum Command cmd = INVALID;
18 read(client_fd, &cmd, sizeof(cmd));
19

20 switch (cmd) {
21 case INVALID: free(parser); // missing break;
22 case PARSE:
23 Array *array = (Array *)malloc(32); // re-allocation
24 read(client_fd, array->buf, 24); // content changes
25 parser->handler(array->buf); // use-after-free
26 free(parser); break;
27 }}

Figure 1: An example of use-after-free bugs. The parser object
is freed at line 23 if the command is INVALID, but is used at line 25
for the indirect call. This bug is exploitable as attackers can change
the object content at line 24 due to the memory reuse.

tion through parser->handler (line 25). If the command is
INVALID, the code will free the object parser (line 21). Due to
the lack of a break statement at line 21, the code at line 25 will
use the freed parser, leading to a use-after-free vulnerability.

This use-after-free bug is exploitable and attackers can
remotely execute arbitrary code. Specifically, when the ob-
ject parser is freed at line 21, the memory manager (e.g.,
glibc) will not immediately return the memory occupied by
parser to the operating system. When the code at line 23
requests an Array object, the memory manager will reallocate
the memory originally used by parser to array, as Array
has the same size as Parser. Now array and parser point to
the same memory location. The read function at line 24 will
fill the array->buf with the untrusted user input, which will
effectively overwrite the members of parser, including the
function pointer handler. When the code invokes the parser
handler, it will jump to any location specified by the attacker,
resulting in a control-flow hijacking attack.

2.2 Use-After-Free Bugs and Exploits
Use-after-free bugs may lead to different consequences de-
pending on the logic of the program and the memory manager.
We summarize the possible consequences in Table 1. If the
system has removed the permission to access the correspond-
ing memory (S1), the after-free use will trigger an access
violation and cause the program to crash. If the memory is
still accessible and the memory has not been reallocated to
other objects (S2), the obsolete content of the freed object
will be used. If in the interim the memory has been allocated
to other objects (S3), the content of the new object will be

Table 1: Consequences of use-after-free bugs. Depending on the
memory allocator and the program logic, attackers may launch severe
attacks, including code injection and information leakage.

Corresponding memory After-free use Exploitable?

S1 Inaccessible Crash No
S2 Accessible & never reused Get old content No (w/o metadata writing)
S3 Accessible & reused Get new content Possible

used instead. In the last two cases, depending on the retrieved
value and its usage, the program may crash, produce wrong
results, or work “well” without any observable anomaly. The
example in Figure 1 falls into S3, where the new object array
occupies the memory originally allocated to parser.

A use-after-free in S3 is likely to be exploitable. A bug
in S1 is not exploitable as it always causes the program to
crash. In S2, the exploitability of the bug depends on the mem-
ory manager and the program logic. If the memory manager
makes no change to the freed region, the program will remain
well-behaved as the freed region continues to have a validly
formed object. Until the memory manager unmaps the page
(moving into S1), it is as if the application never freed the
object. However, if an allocator alters the freed block, like
storing some metadata, an attacker may abuse this behavior
to exploit the bug. For example, they might be able to modify
free list metadata to achieve arbitrary memory write [29]. By
contrast, in S3, an attacker can reclaim the memory and fill in
new content, thus affecting the following usages.

To exploit a use-after-free bug in S3, attackers have to
follow the pattern of free-reallocate-use. In the first step,
they trigger the program to free a vulnerable object. Then,
they request a similar-sized object to obtain the freed memory.
They fill the memory with contextually appropriate data. For
example, in Figure 1, attackers will overwrite the function
pointer handler in parser to a different address, like system.
Finally, when the program reads the memory, the malicious
content will be retrieved and used to launch the attack. In
Figure 1, the free-reallocate-use pattern can be mapped
to line 21, lines 23-24 and line 25.

2.3 Approach Overview
Of the three steps of a successful use-after-free exploit,
free-reallocate-use, reallocate is the most unique be-
havior triggered by attackers. If we can prevent the reuse
of freed objects, attackers will not be able to re-occupy the
freed memory and cannot change the content. In that case,
an exploitable use-after-free bug will not be exploitable any
more. While the program may run well, abnormally, or even
simply crash, it is out of the attacker’s control. We call this
memory management method one-time allocation (OTA).

Although the idea of OTA is straightforward, it is non-
trivial to build a practical OTA allocator. Previous works
explored ideas similar to OTA, but they either failed to
provide sufficient security or imposed unacceptable perfor-

mance penalty. DieHarder allocates memory at randomized
addresses [25], but this only provides a probabilistic assur-
ance that memory chunks will not overlap with each other.
Archipelago places each allocation on a distinct physical
page [19], while Oscar simulates the same object-per-page
strategy by masking the allocation through virtual pages [7].
However, creating these shadow pages can introduce more
than 40% overhead due to frequent system calls. Cling pre-
vents memory reuse between mismatched types [3], but leaves
space to exploit use-after-free bugs within compatible types.
In the original paper, the author of Cling discussed the idea of
one-time allocation, but he treated it as an impractical solution
due to heavy memory usage.

Despite the unpleasant history, we notice that OTA still
has genuine merit: a straightforward design and strong secu-
rity guarantee. Without needing complicated intelligence or
external system dependencies, OTA can eliminate the threat
of use-after-free bugs. The design also helps avoid careless
errors in implementation. Therefore, we explored different
choices to mitigate the remaining challenge of overhead while
retaining the security benefit of OTA. Fortunately, we found
a set of solutions that enable a practical OTA implementa-
tion. Our results in §6 show that the overhead of FFmalloc is
minimal in the vast majority of cases.

2.4 Threat Model
Before exploring the design space, we define the threat model
where OTA aims to protect benign programs. We assume that
a program contains one or more use-after-free bugs, and some
of them are exploitable. Other vulnerabilities, like buffer over-
flows or type errors, are out of the scope of this work. We
assume attackers can only exploit use-after-free bugs. Other
bugs cannot be used to bypass or corrupt the OTA memory
manager. Our threat model is consistent with previous propos-
als on use-after-free defense [2, 15, 23, 30, 35, 37].

3 Design Space Exploration

3.1 Forward Continuous Allocation
In our first design attempt, we implemented a forward con-
tinuous allocator, called FCmalloc. FCmalloc uses a pointer
to track the end of the last allocation. For a new memory re-
quest, it simply advances the pointer by the requested size and
returns the old value. Since the pointer is only incremented,
any call to malloc will get a distinct region. When the pointer
reaches the end of the mapped pages, FCmalloc will request
additional pages from the operating system through the mmap
system call. For each free request, FCmalloc releases all com-
pletely free pages (i.e., no byte is in use) to the system with the
munmap system call. The simple design of FCmalloc enables
compact allocation, where each allocated chunk immediately
follows the previous one.

Table 2: VMA issue of FCmalloc on SPEC programs. Due to the
forward allocation, programs with FCmalloc require more VMA struc-
tures. Batch processing can help mitigate this issue. FC-X means we
only release at least X continuous freed pages.

Benchmark glibc FCmalloc FC-2 FC-8 FC-32

perlbench 4,401 58,737 46,299 23,171 9,321
bzip2 23 35 35 35 35
gcc 2,753 6,525 4,665 3,120 1,854
mcf 20 31 30 30 30
milc 46 65 65 65 65
namd 128 57 56 56 56
gobmk 25 61 57 52 48
dealII 4,760 2,322 1,052 338 326
soplex 152 99 96 93 89
povray 51 109 89 74 57
hmmer 35 197 183 145 114
sjeng 20 32 32 32 32
libquantum 29 38 38 35 35
h264ref 228 89 83 80 80
lbm 23 34 34 33 33
omnetpp 1,164 15,933 15,040 13,728 12,521
astar 1,762 6,726 5,370 3,703 2,790
sphinx3 168 31,409 31,382 31,064 9,022
xalancbmk 2,705 68,606 48,526 34,826 23,434

FCmalloc is the most straightforward way to implement
OTA. However, after applying it to the SPEC CPU2006 bench-
marks, we identify three challenges that limit its practicality.

Performance Overhead. FCmalloc has high performance
overhead due to the frequent mmap/munmap system calls. For
example, given the input file c-typeck, the gcc benchmark
will send 831,410 mmap/mumap system calls to the Linux kernel,
leading to 40.8 seconds spent in the kernel space. With glibc,
gcc only issues 57 such system calls which merely cost 0.59
seconds. The overall overhead is 60.2% for c-typeck.

Memory Overhead. FCmalloc can lead to significant mem-
ory overhead compared to the standard C allocator. Since the
OS only allocates or releases memory on page granularity, all
4096-bytes of a page cannot be returned as long as one byte
is still in use. Even worse, if a small allocation straddles the
boundary between two pages, then neither page can be freed.

VMA Limit. Frequent memory release with munmap could ex-
haust the VMA kernel structures. The Linux kernel creates a VMA
structure for each set of contiguous pages. When FCmalloc
releases a page that is in the middle of some continuous pages,
the Linux kernel will split the corresponding VMA in two. By
default, Linux allows at most 65,535 VMA structures for each
process. Once this limit is reached, no pages can be released
unless they are at the margin of an existing VMA. This behavior
exacerbates the memory overhead of the process. Table 2
shows the number of VMAs used by SPEC benchmarks. As we
can see, FCmalloc increases the number of VMAs for most of
the programs. In the worst case, it causes xalancbmk to use
68,606 VMAs, exceeding the default limit of the Linux kernel,
while the original glibc only requires 2,705 VMAs. Therefore,
FCmalloc introduces high memory overhead to xalancbmk.
Other programs incurring high VMA-usage include perlbench,
omnetpp and sphinx3.

3.1.1 Mitigation: Batch Processing

We find that batch mapping and unmapping can help mitigate
the aforementioned challenges. When requesting memory
from the kernel, we can specify a large number of pages using
mmap at one time. FCmalloc then handles malloc with this
region until this batch of pages is used up, at which time
FCmalloc will issue another mmap request. When the program
tries to free a chunk of memory, FCmalloc checks if this will
create a set of continuous freed pages. If so, we can release
them together with one munmap system call. Batch processing
effectively reduces the performance overhead of FCmalloc, as
it can significantly reduce the number of system calls. For the
example of gcc, when FCmalloc only releases at least 32 freed
pages, we can save 471,144 munmap system calls (58.7%).
Reduced system calls can also help mitigate the VMA issue.
As shown in Table 2, the VMA overhead of FCmalloc keeps
decreasing if we release memory less often but with more
pages. For example, when FCmalloc only releases 32 pages,
we can save 45,172 VMAs from xalancbmk (65.8% reduction).
For perlbench and omnetpp, batch processing helps reduce
the VMA counts to a normal range. However, batch processing
will enlarge the memory usage of the protected execution, as
batch mapping introduces mapped-but-not-allocated memory
and batch unmapping brings freed-but-not-unmapped pages.

3.2 Forward Binning

Our second design attempt was a forward binning allocator,
called FBmalloc. In contrast to FCmalloc, FBmalloc groups
allocations of similar sizes into a bin. This design is usually
called a BiBop allocator - a big bag of pages [3, 10, 12, 25].
FBmalloc creates several bins for allocations with less than
4096 bytes. All allocations within a bin will get the same-size
chunks. For allocations greater than 4096 bytes, FBmalloc
rounds the size up to the next page size, and directly uses
mmap to request new pages. FBmalloc uses one page per small
bin at a time to serve the malloc request. Once a bin is fully
allocated, FBmalloc uses mmap to request an additional page
from the kernel. Only when the bin is fully freed, will it
be released to the system. Requests for different sizes will
get memory from different bins, and thus the return value of
mallocmight not be strictly increasing. However, FBmalloc is
still a valid OTA, as it never reuses bins and takes the forward
continuous allocation to manage memory within a bin.
FBmalloc helps mitigate the memory overhead issue of

FCmalloc, especially when small allocations have a longer
lifetime than large ones. In the omnetpp benchmark of SPEC
CPU2006, certain small objects are rarely freed, while around
them are large objects with shorter lifetime. This leads to
heavy memory overhead with FCmalloc. With FBmalloc,
these particular allocations are co-located on a much smaller
number of pages (bins), which effectively limits the overhead.

3.3 Allocator Fusion

Our final design, called FFmalloc, marries the ideas of forward
continuous allocation and forward binning allocation to take
advantage of their strengths. FFmalloc handles allocations up
to 2048 bytes via the binning allocator. This prevents small
long-lived allocations holding onto freed pages. FFmalloc
serves large allocations from the continuous allocator to mini-
mize allocation waste due to alignment requirements.
FFmalloc assigns each allocator a pool, which contains sev-

eral continuous pages. A pool is the basic memory unit that
FFmalloc requests from the OS, and its size is configurable
during compilation. Currently, we set the pool size to be 4MB.
For allocations larger than the pool size, FFmalloc will create
a special pool that is just large enough for the request, called a
jumbo pool. Only one pool can be assigned to the binning allo-
cator, while the continuous allocator can have multiple pools.
FFmalloc associates each CPU core with a distinct pool to
reduce lock contention. When the remaining space in a pool is
insufficient to satisfy a request, FFmalloc creates a new pool.
FFmalloc will continue to place future smaller allocations in
the original pool, until the pool is filled or too many pools
have been created. We create the first pool offset from the
end of the existing heap region. This allows an application to
use both the glibc allocator and FFmalloc at the same time.
This design also makes the starting address of FFmalloc ran-
domized, preserving the security benefits of ASLR. FFmalloc
ensures that the kernel supplies pages at increasingly higher
addresses by specifying the MAP_FIXED_NOREPLACE flag for
mmap. With this flag, the kernel tries to map the memory at
the specified location and returns an error if such placement
conflicts with an existing mapping. FFmalloc keeps probing
forward until it finds an available address for the next pool.

4 Implementation

4.1 Metadata of Allocations

FFmalloc tracks its allocations in different metadata struc-
tures. Each pool of the continuous allocator has an array of
allocated addresses. For each allocation, FFmalloc appends
the return value of malloc to the array. Since FFmalloc allo-
cates memory forward, the array is naturally sorted and allows
for efficient searching. We can obtain the size of each alloca-
tion by subtracting its address from the next entry in the array.
As all allocations from FFmalloc are 8-byte aligned, the last
three bits are always zeros. We use the last two bits to indicate
the status of a memory chunk: 00means the memory is in use;
01 means the memory is freed and safe to release; 11 means
FFmalloc has released some pages in this allocation. The pool
of the binning allocator has an array of structures, with one
entry per page. This structure records the allocation size, the
next unused chunk, and a bitmap to maintain the status of
each chunk, where 1 means in use and 0 means freed.

FFmalloc connects each memory chunk to its metadata
through a central three-level trie. The key of the mapping is
the address of each memory chunk, while the value points
to the metadata structure of the pool. That structure records
the start and end address of the pool, the type, the next avail-
able address or page, pointers to the type-specific metadata,
and unmapped regions. Jumbo pools only have type informa-
tion, start address, and end address. All metadata is stored
separately from the pool, like other secure allocators.

4.2 Freeing Memory
When the program calls free to free memory, FFmalloc first
locates the metadata of the pool, and marks the corresponding
slot in a bitmap of the binning pool, or updates the pointer
in the array of a continuous pool. Following the principle of
batch processing, it will not immediately release the memory
to the system. Instead, it waits for enough continuous pages
to be freed and returns them with one munmap system call.
Before compilation, we can change the minimum number of
continuous pages for a munmap system call. Increasing this
threshold trades memory for speed. As will be shown in §6.4,
we evaluated the tradeoff and empirically picked eight as the
default value in the current implementation.
Detecting double-free and invalid-free. While not an origi-
nal design goal, the metadata of FFmalloc helps us detect
double-free or invalid-free bugs. Double-free bugs free a
dangling pointer, which may corrupt the allocator’s meta-
data and lead to further attacks, like arbitrary memory access.
Invalid-free bugs instead free an address not allocated by
malloc. When the program invokes free, FFmalloc first lo-
cates the metadata corresponding to that address, and then
checks whether the underlying memory has been freed. It will
find the problem and terminate the execution if the program
tries to free a dangling pointer, or an invalid address.
Lazy free. The straightforward way to return pages to the
system is to invoke the munmap system call, where the ker-
nel will immediately release the memory. However, starting
from version 4.5, the Linux kernel provides an alternative
way for lazy memory release. Specifically, if we provide the
MADV_FREE flag to the madvise system call, the kernel will
only reclaim the pages during heavy memory pressure. We
provide both implementations to use madvise or munmap to
release freed pages. When madvise is used, FFmalloc will
completely unmap the pages once all allocations in a pool are
freed. In §6.4, we will evaluate the benefits and limitations
of each method by evaluating them on the SPEC CPU2006
benchmarks.

4.3 Reallocation under OTA
Function realloc allows an application to change the size of
an existing allocation. If the new size is smaller than the old
one, a memory allocator can just shrink the size and return

quickly. But if the new size is larger, the allocator must check
whether the memory after the current allocation has enough
space for the extra bytes. If so, the allocator will just increase
the size in its metadata and immediately return. In the worst
case, the allocator has to allocate a new, large-enough memory
chunk, copy the existing content into the new one, free the
old allocation, and return the new address.
FFmalloc has to take a different approach since we want to

avoid reusing any memory. As all allocations in a bin share
the same size, growing an allocation beyond the size always
requires a new allocation. For a continuous allocation, grow-
ing the allocation proceeds as the traditional method, except
that the following memory must have not been allocated. Due
to the no-reuse constraint, realloc in FFmalloc is more likely
to perform a reallocation than other allocators. If the program
has many invocations to realloc, we can expect FFmalloc to
impose noticeable overhead.

4.4 Supporting Multi-threaded Applications

To improve the allocation speed on multi-threaded applica-
tions, the binning allocator in FFmalloc borrows the thread
caching technique from tcmalloc [12] for lock-free allocation.
Thread caching creates a distinct cache for each thread of the
process. Each call to malloc is served by the corresponding
thread-specific cache. Since caches are not shared between
threads, there is no risk of contention and thus no need for
locks. As noted earlier, FFmalloc creates one pool at a time
for all binning allocators of all threads. Then, we split the pool
into same-sized pieces, and assign pieces when threads are
started or consume all previously assigned pages. In this way,
each thread has its own memory space for binning allocation.

Marking a small allocation as free is also lockless. To clear
the corresponding bit in the bitmap, FFmalloc uses an atomic
bitwise and operation to guarantee the operation safety. When
we see a particular number of free pages, FFmalloc frees
small allocations after requiring a lock. Allocations from the
continuous pool are not handled by the thread cache. Since
simultaneous allocations from multiple threads could attempt
to read and update the next allocation pointer at the same
time, a race condition is possible. Therefore, we protect these
allocations via locks. However, to reduce lock contention,
FFmalloc has a configurable option to have a continuous pool
per CPU core, turned on by default. The allocator will identify
the CPU core currently executing the thread, and allocate the
memory from the continuous pool of that core. This allows
multiple threads to execute in parallel with reduced risk of
contention at the cost of additional memory overhead.

5 Security Evaluation

We tested FFmalloc on real-world vulnerable programs to
demonstrate its ability to prevent use-after-free attacks (§5.1).

Table 3: Preventing UAF attacks. We collected working exploits from six real-world UAF vulnerabilities and five CTF challenges. ✔ means
attackers can successfully launch the attack, while ✗ means FFmalloc prevents the exploit. FFmalloc successfully prevents all of them.

Program ID Bug Type Link Original Attack With the Protection of FFmalloc

babyheap

CTF challenges

UAF −→ DF ✔ Arbitrary code execution ✗ Exception due to failed info-leak
childheap UAF −→ DF ✔ Arbitrary code execution ✗ DF detected
heapbabe UAF −→ DF ✔ Arbitrary code execution ✗ DF detected
ghostparty UAF ✔ Arbitrary code execution ✗ Exception due to failed info-leak
uaf UAF ✔ Arbitrary code execution ✗ Exploit prevented due to new realloc

PHP 7.0.7 CVE-2016-5773 UAF −→ DF ✔ Arbitrary code execution ✗ Exploit prevented & DF detected
PHP 5.5.14 CVE-2015-2787 UAF ✔ Arbitrary code execution ✗ Assertion failure (uncontrollable)
PHP 5.4.44 CVE-2015-6835 UAF ✔ Arbitrary memory disclosure ✗ Exploit prevented & run well
mruby 191ee25 Issue 3515 UAF ✔ Arbitrary memory write ✗ Exploit prevented & run well
libmimedir 0.5.1 CVE-2015-3205 AF −→ UAF ✔ Arbitrary code execution ✗ Exploit prevented & run well
python 2.7.10 Issue 24613 UAF ✔ Restricted memory disclosure ✗ Exploit prevented & run well

UAF: Use-After-Free, DF: Double Free, AF: Arbitrary Free

We also performed a study to understand its design benefit
and implementation security (§5.2).

5.1 Preventing Use-After-Free Attacks

We broadly searched in public vulnerability databases, like
Exploit-DB and HackerOne , and collected six exploits
for four real-world applications, including the PHP language
interpreter PHP, the Ruby language runtime mruby, the MIME
directory parser libmimedir and the Python language inter-
preter python. In addition, we also selected five vulnerable
challenges from popular capture-the-flag (CTF) games. We
fed each exploit to the original and the FFmalloc-protected
programs and analyzed the consequence.

Table 3 shows our protection result: FFmalloc successfully
prevents all 11 use-after-free attacks. The Type column shows
the type of bug, where → means the first bug leads to the
second one. For example, UAF→DF indicates that the orig-
inal use-after-free bug leads to a double-free vulnerability.
Originally, each exploit successfully launches a malicious ac-
tion, like arbitrary code execution, taking over the instruction
pointer, or arbitrary memory writing. With the protection of
FFmalloc, the execution either runs “normally” to the end, or
crashes in the middle. We manually inspected the final exe-
cution state running with FFmalloc to understand the reasons.
When the freed page had been unmapped, the after-free use
triggered an invalid access exception. Otherwise, the after-
free use succeeded and the execution continued. In that case,
since the retrieved value remained unmodified, the program
could run well to the end (five executions). However, since
the attackers made certain assumptions on the value type, like
a pointer, the executions also crashed due to failed pointer
dereferences (two executions), or by assertion failure (one exe-
cution). For the other three executions, FFmalloc detected the
double-free issues and proactively terminated the processes.
Case Study: PHP. CVE-2015-6835 is a use-after-free bug
in the unserialize feature of PHP . With a crafted session
string, an attacker can keep a reference of a zval object even

after the memory is freed. A proof-of-concept (PoC) exploit of
this vulnerability is available online . With the PoC, PHP first
frees the object, and then reallocates the freed memory to hold
the input data, which overwrites the object with the malicious
content. When the program uses the freed memory, function
session_decode will return arbitrary memory contents, like
pointer values, where further attacks (e.g., code execution)
could be constructed accordingly. After we used FFmalloc to
replace the default memory allocator Zend, the vulnerable PHP
failed to retrieve any data and showed identical behavior to
the patched version.

Case Study: mruby. mruby is a lightweight runtime for the
Ruby language . It has an exploitable use-after-free vulner-
ability in commit 191ee25 . The original PoC exploit from
HackerOne causes execution to crash as it modifies a pointer
inside the freed object to an invalid address. We updated the
PoC to make it an arbitrary memory write primitive such that
the new PoC makes the proc object point to a fake data seg-
ment controlled by attackers. From there mruby finally jumps
into the OP_MOVE opcode handler with our fake virtual register
values and writes the memory of our choice. We ran mruby
with FFmalloc and launched the attack. This time, the runtime
shut down gracefully as it could not parse the supplied exploit
code. We confirmed that the use-after-free bug was triggered
during the execution. However, since FFmalloc does not reuse
memory, the old content of the freed object was used, and thus
nothing critical happened.

CTF Challenges. We applied FFmalloc to five Capture-The-
Flag (CTF) challenges that have use-after-free bugs. Although
CTF problems are smaller than real-world programs, their
authors often add uncommon challenges to increase the diffi-
culty of the exploitation. We tested FFmalloc on CTF prob-
lems to cover edge cases that are missed in real-world pro-
grams. The original PoCs abused allocator-specific structures
to execute shell commands. We further developed three new
PoCs that purely utilized the program’s structure to achieve
arbitrary memory write and control-flow hijacking, which
were independent of characteristics of specific heap alloca-

https://secuinside.com
https://secuinside.com
https://codegate.org
https://pwnable.tw
https://pwnable.kr
https://hackerone.com/reports/73235
https://hackerone.com/reports/73235
https://www.exploit-db.com/exploits/38123
https://hackerone.com/reports/213261
https://packetstormsecurity.com/files/132257/Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept. html
https://bugs.python.org/issue24613
https://www.exploit-db.com/
https://www.hackerone.com/
https://nvd.nist.gov/vuln/detail/CVE-2015-6835
https://www.exploit-db.com/exploits/38123
https://mruby.org/
https://hackerone.com/reports/213261

1 #include <stdio.h>
2 #include <stdlib.h>
3 void* p[256];
4 int main() {
5 p[0] = malloc(842373); // allocate p[0]
6 p[1] = malloc(842389);
7 free(p[1]);
8 free(p[0]); // free p[0], but not nullify
9 p[2] = malloc(842373); // the same as p[0]

10 return 0;
11 }

Figure 2: PoC of the bug in MarkUs. By design, MarkUs does not
release an object O if it can find any reference of O from stack or
global memory. In this PoC, although p[0] still points to the first
allocated object, MarkUs returns the same address at line 9.

tors. As shown in Table 3, FFmalloc successfully prevented
all exploits. Even with a deep understanding of each problem,
we could not find ways to bypass FFmalloc.

5.2 Secure for Deployment

FFmalloc provides robust security by the virtue of its straight-
forward design. Its security guarantee is based on a sim-
ple, easy to reason about proposition. Its implementation is
straightforward, avoiding the complicated logic of memory-
recycling code. By contrast, other defenses against use-after-
free bugs, such as pointer invalidation [15, 35] and garbage
collections [2,18,30], rely on the soundness and completeness
of their analyses for security. Unfortunately, it is very chal-
lenging to correctly implement such sophisticated techniques,
and any mistakes in implementations can lead to severe secu-
rity flaws, some even breaking their guarantee.

To understand the security status of different secure al-
locators, we ran ArcHeap [39] on each implementation for
24 hours to find potential issues. ArcHeap can automatically
find heap exploitation techniques of an allocator, which can
be developed further into powerful primitives (e.g., arbitrary
writes). After the 24 hours of testing, ArcHeap did not discover
any security issue from FFmalloc, demonstrating FFmalloc’s
robustness on memory corruption vulnerabilities.

Other tools that rely on complex analyses are not as ro-
bust as FFmalloc in their security guarantee given certain
implementation issues. For example, we discovered that
MarkUs [2], which uses garbage collection techniques to
prevent use-after-free vulnerabilities, failed to protect large-
size blocks. Figure 2 shows the proof-of-concept (PoC) to
trigger this bug. By design, MarkUs will not release an ob-
ject O if it can find any reference of O from the stack, global
memory, and registers. In the example code, p[0] holds the
pointer value of the first allocated object by line 5. Even if
this object is freed at line 8, the global array p still contains its
reference at the 0th element. In theory, MarkUs should hold
the memory and not allocate it to another request. However,
when we requested the same-size memory at line 9, MarkUs
returned the same address as p[0], which means the memory
had been released and reused. In the case when the dangling

pointer p[0] is used after free, attackers can exploit the bug
to launch attacks.

Moreover, after additional manual analysis, we found that
MarkUs’s management for quarantined objects simplified the
exploitation of use-after-free bugs. To manage the quaran-
tined objects, MarkUs writes an encoded pointer to the first
eight bytes to freed objects to track the next chunk in the
quarantine list. Unfortunately, the first eight bytes of a poly-
morphic object in C++ is the pointer to its virtual function
table (vftable). Thus, the freed object’s vftable will become
the encoded pointer by MarkUs. The encoded pointer had pre-
dictable most significant bits because its xor encoding used
a magic value (since corrected to point to an invalid address
region). Therefore, attackers did not have to reclaim the freed
object as in an ordinary exploitation scenario. Instead, they
just had to spray the memory pointed by the encoded pointer
with fake function pointers. When the program used freed
memory, it would take the fake, malicious function pointers
for indirect calls, leading to an arbitrary code execution at-
tack. Figure 8 in the Appendix shows a proof-of-concept code
about the exploitation. We responsibly reported these issues
to the developers and they have since been patched [16,17,38].
FFmalloc will not have this kind of critical failure as it does
not write any metadata to freed chunks.

6 Performance Evaluation

We evaluated FFmalloc on commonly used benchmarks
and real-world programs to understand its overhead on
single-threaded applications (§6.1), multi-threaded applica-
tions (§6.2) and large applications (§6.3). We also explored
different values for certain internal settings to find the optimal
configuration that makes FFmalloc achieve a balance between
performance and memory usage (§6.4).
Benchmarks. To measure the overhead of FFmalloc and
find the optimal settings, we selected four sets of bench-
marks: SPEC CPU2006 with 19 single-threaded C/C++ pro-
grams, PARSEC 3.0 with 15 multiple-threaded workloads the
JavaScript engine ChakraCore and the web server NGINX. We
excluded the raytrace workload from PARSEC 3.0, as the
compiled binary hangs on our system [1].
Setup. We performed our evaluations on a 64-core machine
running Ubuntu 18.04, with Intel CPU E7-4820 at 2.00GHz
and 256GB memory. We compiled all benchmarks with their
default configurations, except the x264 benchmark in PAR-
SEC 3.0. The default -O3 optimization lead to some crashes,
and we used -O2 instead to avoid the problem [11]. We set
the environment variable LD_PRELOAD to the OTA library so
that the same compiled binary was used with our hardened
memory manager and other allocators. We set FFmalloc to its
default setting, which releases at least eight consecutive free
pages to the system using the munmap system call. §6.4 evalu-
ates the different settings and discusses our choice. During the

0

1x

2x

3x

4x

5x

T
im

e

7.7x 5.1xFFmalloc
FreeGuard
MarkUs
pSweeper*

CRCount*
DangSan*
Oscar*
DangNull*

perlb
ench

bzip2 gcc
mcf

milc
namd

gobmk
dealII

soplex
povray

hmmer
sje

ng

lib
quantum

h264ref
lbm

omnetpp
asta

r

sphinx3

xalancbmk

GEOMEAN

0

1x

2x

3x

4x

5x

6x

7x

M
em

or
y

8.9x 22.0x 18.0x 11.7x

134.6x

10.4x 10.9x

20.5x

8.1x

17.0x

Figure 3: Overhead for SPEC CPU2006. 1x means no overhead. FFmalloc uses munmap to release memory to the system, 8 pages at a time.
For tools with *, we use the results reported in the literature. DangNull did not report overhead for perlbench, dealII, libquantum and omnetpp.
The gcc and soplex tests crash when running with FreeGuard. Placeholders for missing results are in white.

execution, we used the utility time to get the execution time
and the maximum resident set size (RSS), which describes
the maximum memory usage. If one program has multiple
inputs, we use the maximum one among all RSS values.

6.1 Single-threaded Benchmarks

We measured the overhead of FFmalloc on SPEC CPU2006
benchmarks and compared it with seven previous works:
MarkUs [2], FreeGuard [31], CRCount [30], pSweeper [18],
Oscar [7], DangSan [35] and DangNull [15]. We success-
fully reran MarkUs and FreeGuard on our machine. Although
DangSan is open-sourced, we could not get it to compile
on Ubuntu 18.04. Since other works have not released their
source code, we have elected to reuse the reported numbers
from the literature. We ran each benchmark three times and
averaged the results. Figure 3 shows the performance and
memory overhead of each tool on each SPEC C/C++ bench-
mark. A white bar means either the original paper did not
include the number, or the program crashed during the execu-
tion.

Performance Overhead. Considering the geometric mean,
FFmalloc introduces 2.3% overhead to SPEC benchmarks, the
lowest one among eight tools. On the same platform, MarkUs
imposes 14.8% overhead and the overhead of FreeGuard is
7.2%. However, FreeGuard causes two programs to crash,
specifically gcc and soplex. Since gcc usually shows very
high overhead, the overhead of FreeGuard could be higher.
pSweeper reported a similar slowdown as MarkUs, while
CRCount claimed 22.0% overhead. Both Oscar and DangSan
reported about a 40.0% cost. DangNull reported about 54.6%

overhead for 15 out of 19 benchmarks. This result shows
that with our careful design, one-time allocation can have
counterintuitively low performance overhead.

FFmalloc introduces consistent overhead to 19 SPEC
benchmarks, with the standard deviation 0.12, while other
tools have standard deviations from 0.15 (FreeGuard) to 1.25
(DangNull). Among all benchmarks, gcc is an outlier where
FFmalloc makes it slower by 49.8%. We investigated gcc’s
execution, and found that it consumes the largest amount of
memory per second (see the last column of Table 7 in Ap-
pendix A). Therefore, the execution with FFmalloc leads to
significantly more system calls for memory management. For
example, for the c-typeck input, FFmalloc issues 28,767 mmap
and 500,213 munmap system calls, and spends 39.8 seconds in
the kernel space. The original memory allocator glibc only
requires 34 mmap and 23 munmap, which takes 0.59 seconds
to finish. Although the user-space execution with FFmalloc
is faster (reduced from 59.0 seconds to 53.9 seconds), the
overall overhead is 53.7%. In this extreme case, we may need
to optimize our settings to make a new balance between mem-
ory usage and performance overhead (see §6.4). Fortunately,
we have not seen another program like gcc that so quickly
allocates a large amount of memory. Further, other tools also
demonstrate higher overhead for gcc, although the underlying
reasons could be different.

Memory Overhead. Considering the geometric mean,
FFmalloc introduces 61.0% memory overhead to SPEC
benchmarks, similar to that of Oscar. Two previous tools
achieve less overhead than FFmalloc: 18.0% for CRCount,
and 28.1% for MarkUs (rerun). Another four tools consume
more memory: 115.4% for FreeGuard (rerun), 125.2% for

1 2 4 8 16 32 64
0

100

200

blackscholes

1 2 4 8 16 32 64
0

100

200

bodytrack

1 2 4 8 16 32 64
0

100

200

300

canneal

1 2 4 8 16 32 64
0

25

50

75

dedup

1 2 4 8 16 32 64
0

200

400

600

facesim

1 2 4 8 16 32 64
0

200

400

ferret

1 2 4 8 16 32 64
0

200

400

600
fluidanimate

1 2 4 8 16 32 64
0

250

500

750

freqmine

1 2 4 8 16 32 64
0

50

100

netdedup

1 2 4 8 16 32 64
0

250

500

750

netferret

1 2 4 8 16 32 64
0

500

1000

netstreamcluster

1 2 4 8 16 32 64
0

500

1000

streamcluster

1 2 4 8 16 32 64
0

500

1000

1500

swaptions

1 2 4 8 16 32 64
0

100

200

vips

1 2 4 8 16 32 64
0

100

200

x264

Time

1 2 4 8 16 32 64
0

2

4

6

×105 blackscholes

1 2 4 8 16 32 64
0

1

2
×105 bodytrack

1 2 4 8 16 32 64
0.0

0.5

1.0

×106 canneal

1 2 4 8 16 32 64
0

1

2

3

×106 dedup

1 2 4 8 16 32 64
0

2

4

6
×105 facesim

1 2 4 8 16 32 64
0

2

4

×105 ferret

1 2 4 8 16 32 64
0.0

0.5

1.0

×106 fluidanimate

1 2 4 8 16 32 64
0

1

2

3
×106 freqmine

1 2 4 8 16 32 64
0

1

2

×106 netdedup

1 2 4 8 16 32 64
0

2

4

×105 netferret

1 2 4 8 16 32 64
0

2

4

6

×105 netstreamcluster

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

×105 streamcluster

1 2 4 8 16 32 64
0

2

4

×106 swaptions

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

×106 vips

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

2.0
×106 x264

Memory

Figure 4: Overhead on PARSEC 3 with various CPU cores. White bar means the execution hangs or crashes.

pSweeper, 127.1% for DangNull and 148.1% for DangSan.
In this evaluation, we configured FFmalloc to release mem-
ory only if there are eight consecutive freed pages. If we
release memory more aggressively, FFmalloc will have lower
memory overhead and higher performance overhead. We will
discuss the tradeoff between time and memory in §6.4.

An apparent observation from Figure 3 is that the memory
overhead is more diverse than the performance overhead. The
values of the standard deviation range from 0.24 (CRCount)
to 30.37 (DangSan), while the maximum standard deviation
of the performance overhead is merely 1.25 (DangNull). The
common pattern is that, for some benchmarks, most of the
tested tools show significantly higher memory overhead than
that on other benchmarks. Taking omnetpp as an example,
FFmalloc and pSweeper consumes about 4.0× of the original
memory; FreeGuard requires 11.7×; DangSan takes 134.6×;
Oscar spends 4.9×; CRCount and MarkUs consume about
1.7× of the original memory. The extreme memory overhead
is likely due to the characteristic of the program. There is no
tool that always outperforms others on memory usage.

6.2 Multi-threaded benchmarks

We ran 15 benchmarks with seven different core counts,
specifically, 1, 2, 4, 8, 16, 32 and 64, together with four mem-
ory managers: glibc, our FFmalloc, MarkUs, and FreeGuard.

All benchmarks and core count combinations ran success-
fully using glibc or FFmalloc, except netferretwith 64 cores
which alway hung. In comparison, MarkUs failed 19 execu-
tions, while FreeGuard failed eight. All failures happen while
running dedup, ferret, netdedup, netferret, swaptions and
vips. In fact, MarkUs and FreeGuard had multiple random
crashes during other executions. To get meaningful results,
we ran each instance ten times, and reported the first three
successful executions. While still widely used in the literature,
the PARSEC 3.0 benchmarks are no longer in active devel-
opment. When they failed to run on Ubuntu 18.04, we chose
to accept this rather than attempting to patch the benchmarks
which would result in incomparable results. Figure 4 shows
our evaluation results, including the time overhead and the
memory overhead. Eighty-three instances are supported by
all memory managers. Failed executions are represented as
white bars.

Performance Overhead. Considering all successful execu-
tions, FFmalloc introduces 33.1% performance overhead (ge-
ometric mean), compared with 42.9% for MarkUs and -0.18%
for FreeGuard. However, if we only consider the 83 instances
supported by all tools, the overhead is 21.9% for FFmalloc,
43.0% for MarkUs and 1.68% for FreeGuard. FFmalloc only
introduces relatively high overhead to four out of 15 programs
– dedup, netdedup, swaptions and vips, where the geometric
mean is 157.8%, compared with 584.6% for MarkUs and -

Table 4: CPU overhead of secure allocators on ChakraCore. The
numbers are overall average score from all benchmarks (with 10
iterations). Red values mean the performance decreased, while green
values indicate performance improved.

Benchmark glibc FFmalloc MarkUs FreeGuard

WebTooling 25.53 -0.16% -0.43% 1.26%
Octane 9706.8 -0.73% -4.81% 3.22%
Kraken 603.0 0.07% 0.28% 0.03%
SunSpider 21.86 1.88% 3.28% 1.30%
JetStream 97.6 0.20% -3.07% 1.27%

1 2 4 8 12
0.00

0.25

0.50

0.75

1.00

T
h

ro
u

gh
p

u
t

×105 100-connection

1 2 4 8 12
0.00

0.25

0.50

0.75

1.00

×105 200-connection

glibc

FFmalloc

MarkUs

FreeGuard

1 2 4 8 12
0.00

0.25

0.50

0.75

1.00

T
h

ro
u

gh
p

u
t

×105 400-connection

1 2 4 8 12
0.0

0.5

1.0

×105 800-connection

Figure 5: NGINX throughput with various allocators. X-axis
shows the thread number; Y-axis presents the connection number per
second. β-connection means NGINX accepts β parallel connections.

18.0% for FreeGuard. FFmalloc demonstrates merely 4.3%
overhead for others.

We observed several interesting facts about the mem-
ory overhead. First, FFmalloc’s overhead monotonically in-
creased from 5.7% to 50.9% when we used one to 64 cores.
This is expected as FFmalloc uses locks to prevent race con-
ditions and to synchronize the status of the memory man-
ager. The Linux kernel also has a global lock for mmap/munmap
system calls, which further increases the overhead for multi-
core executions. MarkUs followed a similar pattern, but with
several exceptions due to unsupported executions. Second,
FreeGuard could sometimes improve performance over glibc.
For example on dedup, the execution with FreeGuard is 3.8×
faster when running with 64 cores. This is due to the signif-
icantly fewer number of madvise system calls compared to
that of glibc [31].
Memory Overhead. On the geometric mean, FFmalloc in-
troduces 50.5% memory overhead to all successful executions,
compared with 13.0% for MarkUs and 141.2% for FreeGuard.
For the 83 executions supported by all four allocators, the over-
heads are 35.6%, 13.3% and 67.5%, respectively. FFmalloc
brings slightly higher overhead to bodytrack (3.3× of orig-
inal usage) and swaptions (10.5×). We find that compared
with others, these two programs use relatively little memory
(< 50 MB). As FFmalloc reserves page pools for different
bins, the overhead mainly comes from the allocated-but-not-

Table 5: Memory overhead of secure allocators on ChakraCore.
The numbers are average peak memory use from all benchmarks
(with 10 iterations). We show glibc memory usage in kilobytes, and
show others as changes over glibc’s.

Benchmark glibc FFmalloc MarkUs FreeGuard

WebTooling 454,980 6.09% 70.99% 35.35%
Octane 148,220 142.53% 252.55% 84.28%
Kraken 63,344 536.43% 872.17% 765.30%
SunSpider 103,252 378.36% 405.63% 440.97%
JetStream 195,552 162.71% 74.75% 241.61%

1 2 4 8 12
0

1

2

3

D
el

ay
(m

s)

×101 100-connection

1 2 4 8 12
0.0

0.5

1.0

1.5
×101 200-connection

glibc

FFmalloc

MarkUs

FreeGuard

1 2 4 8 12
0.0

0.5

1.0

1.5

2.0

D
el

ay
(m

s)

×101 400-connection

1 2 4 8 12
0

1

2

3

×101 800-connection

Figure 6: NGINX latency with various allocators. X-axis shows
the thread number, and y-axis presents the connection number per
second. β-connection means NGINX accepts β parallel connections.

used memory. However, the overall memory usage is still
low, even with FFmalloc. MarkUs shows consistent overhead
to all benchmarks. FreeGuard introduces the highest mem-
ory overhead, and shows extremely high memory usages for
swaptions (416×), vips (8.3×) and bodytrack (5.5×). We
believe the 50.5% overhead of FFmalloc is acceptable to many
real-world applications, especially considering its simple de-
sign and strong security guarantee against use-after-free bugs.

6.3 Real-world Applications
We also evaluated FFmalloc on two real-world large programs:
the JavaScript engine ChakraCore developed for the Edge
browser, and the web server NGINX.

6.3.1 ChakraCore

We ran ChakraCore on five sets of benchmarks, specifically,
Octane, Kraken, SunSpider, Jetstream, and the Web Tool-
ing Benchmark, together with four memory allocators: glibc,
FFmalloc, MarkUs and FreeGuard. Table 4 and Table 5 show
the results of our evaluation, including the performance over-
head and memory overhead. In Table 4, as scores in differ-
ent benchmarks have different meanings, we use green text
to show performance improvement, and red text to indicate
performance decrease. FFmalloc introduces less than 2% run-

Table 6: Comparing munmap with madvise. We inspected the
execution of three representative programs and recorded the changes
after switching from munmap to madvise. Both instructions and cache
misses play an important role in determining the execution time.

Benchmark Time Diff # Insn Cache Miss

xalancbmk +4.13% +0.55% 15.54% –> 27.67%
gcc (g23) +11.90% +5.70% 27.76% –> 33.07%
mcf -3.70% -0.02% 27.86% –> 27.85%

time overhead to four benchmarks, and even improves the
performance of JetStream by 0.20%. MarkUs adds the most
overhead, 4.81% to Octane and 3.28% to SunSpider while
FreeGuard improves the performance for three out of five
benchmarks. Regarding memory usage, Table 5 shows that
FFmalloc imposes the least overhead among the three se-
cure allocators for three of the programs. MarkUs adds the
least overhead on JetStream while FreeGuard was the best
on Octane. Overall, FFmalloc, like the other secure alloca-
tors, introduces consistently negligible performance overhead
to ChakraCore, but typically does so with significantly less
memory use.

6.3.2 NGINX

We tested the NGINX webserver through the wrk benchmarking
tool [14] with different settings. A setting with α threads and
β connections means that wrk uses α threads to send requests
to NGINX in parallel, and keeps β connections open at any
moment. We ran each setting for 60 seconds and repeated
the evaluation using glibc, FFmalloc, MarkUs and FreeGuard.
Figure 5 and Figure 6 show the evaluation results. The y-axis
of Figure 5 is NGINX throughput in requests-per-second; a
higher number indicates better performance. FFmalloc and
FreeGuard add negligible overhead in multiple settings, and
only show notably higher overhead for the 12-thread, 100-
connection setting (47.6% decrease for FFmalloc and 58.8%
decrease for FreeGuard). MarkUs has the lowest through-
put for most settings. As the number of threads increase, its
performance consistently decreases and reaches 65.5% less
throughput for the 12-thread, 800-connection setting.

Figure 6 shows NGINX connection latency measured on the
client side. Both FFmalloc and FreeGuard introduce minor
overhead to the latency. MarkUs introduces significant latency,
especially for multi-thread connections.

We also measured the memory overhead for each NGINX
thread. On average, FFmalloc consumes 5.24× more memory
than glibc, similar to the 5.48× overhead of FreeGuard. How-
ever, MarkUs requires 77.72× more memory, which is much
higher than FFmalloc and FreeGuard. Overall, FFmalloc intro-
duces negligible overhead to NGINX, and outperforms MarkUs
for most of the settings.

6.4 Optimal Settings of FFmalloc

We explored multiple options of releasing memory to find
the one enabling the optimal performance and memory usage.
First, we configured FFmalloc to release consecutive freed
memory with at least α pages (details in §4.2). We tested three
different α values, specifically, 32, 8 and 2. In theory, a smaller
α means FFmalloc will release memory more frequently, and
thus will have higher performance overhead and lower mem-
ory overhead. A larger α will have the opposite effect. Second,
we configured FFmalloc to use munmap or madvise to return
memory to the system. munmap forces the kernel to immedi-
ately release the memory, while madvise leaves the kernel
to release the memory during high memory pressure. We ex-
pected that munmap would have higher performance overhead
and lower memory overhead than madvise. Figure 7 shows
the performance and memory overhead of FFmalloc on SPEC
CPU2006 C/C++ benchmarks, with six different settings.

Munmap vs Madvise. Figure 7 confirms our expectations
of the two system calls on memory overhead, but shows a
counter-intuitive result on performance overhead. The Mem-
ory figure shows that FFmalloc with madvise can have sig-
nificantly higher memory overhead than that of munmap. For
example, FFmalloc consumes 198.5× more memory than
the original execution if it postpones the memory release
via madvise, while the overhead is only 7.6× with munmap.
However, the Time figure indicates munmap also outperforms
madvise on performance, from 0.28% to 0.76%. Although
the difference is not significant, considering the high mem-
ory overhead, it is clear that we should use munmap instead of
madvise to release freed memory to the kernel.

We inspected three programs to understand why madvise
sometimes is slower than munmap. The results in Table 6 indi-
cate that both cache misses and extra instructions contribute
to the slower execution of madvise. With the madvise system
call, the Linux kernel does not immediately reclaim pages due
to the low memory pressure in our system. Therefore, future
mmap syscalls will likely get a new physical page that is not
present in the cache. In contrast, munmap forces the kernel to
immediately release the physical page and future mmap calls
can reuse the in-cache physical pages, leading to fewer cache
misses. For SPEC program gcc, running with madvise exe-
cutes 5.70% more instructions, causing the most significant
overhead on madvise.

Minimum Freed Pages. Figure 7 shows that the minimum
consecutive freed pages α is more correlated to memory over-
head than to the performance. The performance overhead
of FFmalloc is 1.71%, 2.21% and 2.22%, respectively for α

values of 32, 8, and 2. Although this is consistent with our
intuition that smaller α leads to higher overhead, the differ-
ence is not very large. Additionally, not all executions exactly
follow this pattern. For example, mcf shows the slowest ex-
ecution when α is set to 8, not 2. On the other hand, α has
a strong impact on the memory overhead when FFmalloc re-

-7
-5

0

5

10

15

T
im

e
ov

er
h

ea
d

(%
)

45.0

63.2

49.8

54.8

48.4

57.2

Free32,U
Free32,A

Free8,U
Free8,A

Free2,U
Free2,A

perlb
ench

bzip2 gcc
mcf

milc
namd

gobmk
dealII

soplex
povray

hmmer
sje

ng

lib
quantum

h264ref
lbm

omnetpp
asta

r

sphinx3

xalancbmk

GEOMEAN

0

1x

2x

3x

4x

5x

6x

7x

M
em

or
y

7.6x

7.6x

7.6x

8.6x

199.5x

199.5x

199.5x

47.3x

79.2x

17.0x

79.2x

79.2x

9.0x

111.0x

111.0x

111.0x

Figure 7: Overhead of FFmalloc with different settings. FreeX means that to release memory, FFmalloc returns at least X consecutive freed
pages to the system, through either munmap (U) or madvise (A).

leases memory with munmap. Especially for programs with
extremely high overhead, like omnetpp, setting a smaller α

can reduce the memory overhead to a reasonable range (from
8.6× to 2.9×). The value of α has no impact on the overhead
with madvise, as madvise does not immediately release the
memory by design. Therefore, the α value 2 is the best choice
among all three values.

During our evaluation, we used the α value 8 and munmap
to test all benchmarks and programs. Therefore, FFmalloc’s
performance overhead can be further reduced if we release
memory less aggressively. Alternately, its memory overhead
can be reduced by releasing memory more agressively.

7 Discussion

7.1 Other Technical Details

Supporting More Functions. Currently, FFmalloc covers
the standard C library functions for memory manage-
ment including malloc, free, realloc, reallocarray,
calloc, posix_align, memalign, aligned_alloc and
malloc_usable_size. FFmalloc does not contain wrappers
of system calls like mmap and munmap. If an application
directly calls mmap and munmap to get memory, a use-after-free
bug may escape the protection of FFmalloc. In this case,
FFmalloc would be unaware of the address space previously
occupied by these mappings and might use them again (only
once) for its own allocation. This escape would also affect
any other secure allocator, but we have not seen it addressed
elsewhere in the literature.

For simple requests to mmap (private, non-file backed, no
fixed address), a future version of FFmalloc could handle them
via the existing jumbo allocation code path. However, it is less

clear what the correct behavior would be for more complex in-
vocations of mmap. For example, how should FFmalloc handle
a request that contained the MAP_FIXED flag? If the specified
region was not previously used, FFmalloc could allow the call
to succeed and then remember to not re-use that range in the
future. But, if the desired address range overlapped with a
region previously returned by mmap or was previously used
by FFmalloc, should FFmalloc fail the call? Blocking the call
and returning a failure code could break perfectly legitimate
functionality and would negate the ability of FFmalloc to be a
drop-in replacement for the glibc allocator. Allowing the call
to succeed risks a bypass of its protection which calls into
question the value of wrapping mmap at all.

Randomization. Address space layout randomization
(ASLR) is widely deployed on modern systems to provide
probabilistic protection against various attacks. One can be
concerned that FFmalloc may diminish the effectiveness of
ASLR due to its sequential allocation scheme. However, such
concern does not exist for FFmalloc. ASLR randomizes mem-
ory on the module granularity, which contains a large number
of pages, including code and data. FFmalloc allocates its first
pool offset from the randomly assigned default heap. In this
way, FFmalloc is fully compatible with ASLR and delivers the
security benefits of ASLR to its users. Different from ASLR,
the deterministic allocation could be a weakness in case the
attack abuses relative heap layout. For example, in case of a
heap buffer overflow attack, crafting an exploit would become
easier if the adjacent heap chunks affected by the overflow
stay at a deterministic relative location. We note that with
a small modification to the allocation algorithm, FFmalloc
could render the relative heap layout in a non-deterministic
way without conflicting our original design goals. We leave
the changes to future work.

7.2 Suitability

While FFmalloc is only a prototype of an OTA allocator, its
success at running all SPEC and PARSEC benchmarks, unlike
many of the other tested systems, demonstrates the feasibility
of using it with real workloads. However, the results of tests
like gcc and dedup indicate that it may not be appropriate for
all applications.
Strengths. Compared to many other systems, FFmalloc pro-
vides a hard, rather than probabilistic, guarantee that it can
prevent use-after-free exploitation unless the entire applica-
tion address space is used. This guarantee is useful in remotely
accessible applications since an attacker may have repeated
opportunities to trigger an exploit. In many cases, this protec-
tion comes with one of the lowest CPU overheads relative to
alternate systems.
FFmalloc should also be a good choice for use in embedded

systems with limited CPU resources, provided they utilize a
64-bit address space. Unlike multiple other systems, FFmalloc
does not require an auxiliary thread, typically assumed to be
running on a different core than the main application thread,
for garbage collection or similar pointer analysis to achieve
its performance level.
Weaknesses. Admittedly, the performance of FFmalloc suf-
fers significantly under certain scenarios. FFmalloc batches
calls to munmap by waiting until a configurable number of con-
secutive pages have been freed before returning them to the
operating system. Necessarily, this means that applications
that free larger allocations will require more munmap calls than
those with small allocations. For example, given the default
8-page threshold, a minimum of 2048 16-byte allocations
would need to be freed before munmap was called versus only
32 freed 1KB allocations.

Additionally, applications that very frequently allocate and
deallocate objects of similar sizes will be slower than with
glibc. In this case, glibc can recycle the same few alloca-
tion sites repeatedly which reduces cache line misses and
avoids system calls for additional address space. In contrast,
FFmalloc, will be slowed down by significantly higher num-
ber of system calls, even with the batching mechanisms in
place.

In addition to the above, FFmalloc can struggle to scale on
multi-threaded applications. Even if FFmalloc eliminated all
locks from its design, calls to mmap or munmap get serialized
within the kernel. Applications that frequently allocate and
deallocate objects across threads will end up getting serialized
as a result. Proposed revisions to break up the mmap-sem lock
in the kernel [6] will likely strongly benefit FFmalloc in this
scenario if implemented.

In terms of memory overhead, FFmalloc is weakest when
applications allocate objects with different lifetimes simulta-
neously. When a long lived object is allocated alongside short
lived objects it could eventually become the lone allocation
preventing unmapping an otherwise unused page or even run

of pages. The smaller the object, the higher the impact on
memory overhead will be.

Finally, as currently implemented, FFmalloc only provides
protection against use-after-free, double-free, and invalid-free
vulnerabilities. Protecting against various overflow, overread,
or underread type attacks was intentionally omitted to focus
on engineering a solution to the OTA problem.
Comparision with Alternatives. FFmalloc compares favor-
ably to other use-after-free focused solutions. By focusing on
attack prevention rather than detecting vulnerable pointers,
FFmalloc’s design is simpler and results in generally higher
performance.

Most competitive with FFmalloc is MarkUs. It incorpo-
rates garbage collection techniques to verify that there are
no dangling pointers to freed allocations. As discussed ear-
lier, in our test environment MarkUs has broadly better mem-
ory overhead but somewhat worse performance overhead
than FFmalloc, though the gap can be narrowed by having
FFmalloc return pages more frequently

In contrast to use-after-free specific solutions, FreeGuard
provides tunable probablistic protection against a broad range
of attack types. Its strong performance characteristics and
breadth of claimed defended attacks on the surface make it an
attractive alternative to glibc or single focus secure allocators.
However, this probablistic protection could often be of limited
value. For example, FreeGuard protects against buffer over-
reads via use of randomly placed guard pages. In their paper,
the authors note that under default settings, FreeGuard only
terminated execution of a vulnerable OpenSSL server when
attacked by Heartbleed ten percent of the time. Additionally,
they claim to mitigate against certain heap overflow attacks
by virtue of not placing heap metadata inline as with glibc.
This is essentially standard practice by secure allocators in
the literature. By this standard, FFmalloc could also claim
limited protection against heap overflow. Instead we consider
this metadata segregation to be for the security of the allocator
rather than the heap.

8 Related work

Secure Allocators. Object-per-page allocators such as
Archipelago [19] and Electic Fence [27] place each object
on an individual page to detect memory safety issues. They
can prevent buffer overflows by placing inaccessible pages be-
tween objects and can limit use-after-free exploitation by ran-
domizing the reuse of freed pages. However, these approaches
are limited to an application that has few live objects or as
debugging tools due to their large overhead resulting from the
page-granularity of an object.

DieHarder [25] is the security-focused evolution of
DieHard [4], which was designed to prevent programs from
crashing due to memory corruption bugs. DieHarder simu-
lates an infinite heap where no allocations adjoin each other.

The gaps between allocations resist buffer overflow attacks,
and randomized allocation can guarantee address space not
being reused probabilistically. FreeGuard [31] provides better
performance than DieHarder by adopting techniques from
performance-oriented allocators (e.g., free lists per size class).
As a result, FreeGuard can achieve similar performance to the
default Linux allocator with significant security improvement,
but failed to reach a similar security level to DieHarder’s.
Recently, Guarder [32] is proposed to bridge this gap as an
evolved version of FreeGuard. It substantially increases its
randomization entropy, but has similar performance overhead
compared to FreeGuard by introducing new techniques to
manage small objects and adjusting tradeoffs between perfor-
mance and security. Unlike these approaches that probabilis-
tically prevent use-after-free bugs, OTA can completely stop
them by guaranteeing one-time allocation. However, OTA is
more modest in only attempting to prevent use-after-free bugs
and its variations such as invalid free and double free.

Cling [3] restricts memory reuse within objects of the same
type rather than completely disabling it. It argues that this
design severely limits an attacker on exploiting use-after-free
vulnerabilities while retaining efficient memory usage. How-
ever, this does not completely block use-after-free exploita-
tion. Rather, it requires the attacker to control a new matching
type object rather than any suitably sized one. Similar to
OTA, Oscar [7] also prevents use-after-free by employing
a forward only allocation principal. It simulates the object-
per-page style allocator using shadow memory to overcome
the high memory overhead of placing each object on discrete
pages. Despite its improvement on earlier work [8], it still im-
poses significant overhead in the form of expensive memory
mapping system calls compared to OTA.
Pointer Invalidation. An alternative approach to preventing
use-after-free attacks is to invalidate dangling pointers when
the object is freed. DangNull [15] keeps track of all point-
ers to all allocated objects, and explicitly nullifies pointers
once the pointed-to object is freed. FreeSentry [37] takes a
similar approach as DangNull, except that it flips the top-bit
of the pointer to make it an invalid address. This helps pre-
serve context when reviewing crash dumps. DangSan [35]
improves the performance of this technique on multi-thread
applications, with the help of an append-only per-thread log.
pSweeper [18] avoids live tracking of pointers by concur-
rently scanning memory to find dangling pointers. Instead
of proactively destroying dangling pointers, CRCount [30]
waits for the program to reset all such pointers; it frees an
object only if the reference counter for the pointer becomes
zero. MarkUs [2] is similar to CRCount, except that it starts
scanning from the stack, global memory and registers. These
schemes usually impose significant CPU and memory over-
head due to the difficulty of tracking pointers in C code.
Use-After-Free Detection. CETS [23] inserts additional
metadata at the program runtime, a lock for each object and
a key for each pointer. During the object creation, it initial-

izes the lock for the object and assigns the corresponding
key to the pointer. During the program execution, the key
is propagated together with the pointer and the lock is reset
when its corresponding object is freed. Thus, any memory
access with a dangling pointer will be detected and blocked
by checking its key. Since CETS needs to maintain a key for
each pointer and to compare key and lock for each memory
access, it introduces substantial overhead.

Undangle [5] utilizes dynamic taint analysis to track the
propagation of pointers, and detects the use-after-free bug if
the source of the pointer has been freed. Due to the heavy
runtime overhead of taint analysis, Undangle is impractical
for real-world deployment.

Valgrind [24] and AddressSanitizer [28] can detect memory
errors including use-after-free by checking the validity of
memory accesses. Since they are designed for debugging,
not for security, an advanced attacker can easily bypass their
mechanisms. For example, researchers already have shown
that use-after-free is still exploitable under AddressSanitizer
by exhausting its fixed-size quarantine for freed memory [15].

Project Snowflake [26] adds manual memory management
to a garbage-collected runtime. It introduces the notion of a
shield which tracks references to unmanaged memory and
can only be created by the reference owner. Even after the
owning reference is deleted, the memory will not be reused
until all shields have been destroyed as well.

9 Conclusion

We designed and implemented a memory allocator based on
the one-time allocation (OTA) principal, aiming to prevent
exploitation of use-after-free bugs. OTA provides a distinct
memory chunk for each memory request, where attackers can-
not reclaim the freed memory and thus cannot overwrite the
content for exploitation. We explored several design choices
and found the optimal ones to reduce the overhead of our
prototype. The evaluation shows that OTA can prevent real-
world use-after-free exploits effectively and efficiently.

Acknowledgment

We thank the anonymous reviewers, and our shepherd, An-
drea Lanzi, for their helpful feedback. This research was
supported, in part, by the NSF award CNS-1563848, CNS-
1704701, CRI-1629851 and CNS-1749711 ONR under grant
N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-2895,
DARPA AIMEE, and ETRI IITP/KEIT[2014-3-00035], and
gifts from Facebook, Mozilla, Intel, VMware and Google.

References
[1] Muhammad Abid. Raytrace running infinitely. https:
//lists.cs.princeton.edu/pipermail/parsec-users/
2010-January/000620.html.

https://lists.cs.princeton.edu/pipermail/parsec-users/2010-January/000620.html
https://lists.cs.princeton.edu/pipermail/parsec-users/2010-January/000620.html
https://lists.cs.princeton.edu/pipermail/parsec-users/2010-January/000620.html

[2] Sam Ainsworth and Timothy Jones. MarkUs: Drop-in Use-after-free
Prevention for Low-level Languages. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland), May 2020.

[3] Periklis Akritidis. Cling: A Memory Allocator to Mitigate Dangling
Pointers. In Proceedings of the 19th USENIX Security Symposium
(Security), Washington, DC, August 2010.

[4] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Mem-
ory Safety for Unsafe Languages. In Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Ottawa, Canada, June 2006.

[5] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: Early Detection of Dangling Pointers in Use-After-Free
and Double-Free Vulnerabilities. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Minneapolis,
MN, July 2012.

[6] Jonathan Corbet. How to get rid of mmap_sem. https://lwn.net/
Articles/787629/.

[7] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A
Practical Page-Permissions-Based Scheme for Thwarting Dangling
Pointers. In Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, BC, Canada, August 2017.

[8] Dinakar Dhurjati and Vikram Adve. Efficiently Detecting All Dangling
Pointer Uses in Production Servers. In Proceedings of International
Conference on Dependable Systems and Networks (DSN’06), 2006.

[9] Yu Ding, Tao Wei, TieLei Wang, Zhenkai Liang, and Wei Zou. Heap
Taichi: Exploiting Memory Allocation Granularity in Heap-spraying
Attacks. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2010.

[10] Jason Evans. jemalloc: Memory Allocator. http://jemalloc.net/.

[11] Antonio Franques. Can anyone provide detailed steps to fix Host x264?
https://github.com/cirosantilli/parsec-benchmark/
issues/3.

[12] Sanjay Ghemawat. TCMalloc : Thread-Caching Malloc. https:
//gperftools.github.io/gperftools/tcmalloc.html.

[13] Wolfram Gloger. Wolfram Gloger’s Malloc Homepage. http://www.
malloc.de/en/.

[14] Will Glozer. wrk - A HTTP Benchmarking Tool. https://github.
com/wg/wrk, 2019.

[15] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Tae-
soo Kim, Long Lu, and Wenke Lee. Preventing Use-after-free with
Dangling Pointers Nullification. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[16] JungWon Lim. freeing list operation leads to exploitable write-after-
free. https://github.com/SamAinsworth/Markus-sp2020/
issues/2.

[17] JungWon Lim. large chunk (with dangling pointer) is forgotten
and can be reclaimed. https://github.com/SamAinsworth/
Markus-sp2020/issues/1.

[18] Daiping Liu, Mingwei Zhang, and Haining Wang. A Robust and Effi-
cient Defense Against Use-after-Free Exploits via Concurrent Pointer
Sweeping. In Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS), Toronto, ON, Canada, October
2018.

[19] V Lvin, G. Novark, E. Berger, and B Zorn. Archipelago: Trading
Address Space for Reliability and Security. In ACM SIGPLAN Notices,
volume 43, 2008.

[20] Matt Miller. Trends, Challenges, and Strategic Shifts
in the Software Vulnerability Mitigation Landscape.pdf.
https://msrnd-cdn-stor.azureedge.net/bluehat/
bluehatil/2019/assets/doc/Trends%2C%20Challenges%
2C%20and%20Strategic%20Shifts%20in%20the%20Software%
20Vulnerability%20Mitigation%20Landscape.pdf, 2019.
BlueHat IL.

[21] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dog: Hardware for Safe and Secure Manual Memory Management and
Full Memory Safety. In Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), 2012.

[22] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dogLite: Hardware-Accelerated Compiler-Based Pointer Checking. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2014.

[23] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler Enforced Temporal Safety for C. In
Proceedings of the 2010 International Symposium on Memory Man-
agement (ISMM), Toronto, Canada, June 2010.

[24] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, June 2007.

[25] Gene Novark and Emery D. Berger. DieHarder: Securing the Heap. In
Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security (CCS), Chicago, IL, October 2010.

[26] Matthew Parkinson, Dimitrios Vytiniotis, Kapil Vaswani, Manuel
Costa, Pantazis Deligiannis, Dylan McDermott, Aaron Blankstein, and
Jonathan Balkind. Project snowflake: Non-blocking safe manual mem-
ory management in .net. Proc. ACM Program. Lang., 1(OOPSLA),
October 2017.

[27] Bruce Perens. Electric Fence. https://linux.softpedia.com/
get/Programming/Debuggers/Electric-Fence-3305.shtml.

[28] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
Proceedings of the 2012 USENIX Annual Technical Conference (ATC),
Boston, MA, June 2012.

[29] Shellphish. how2heap: A repository for learning various heap exploita-
tion techniques. https://github.com/shellphish/how2heap.

[30] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunhe-
ung Paek. CRCount: Pointer Invalidation with Reference Counting to
Mitigate Use-after-free in Legacy C/C++. In Proceedings of the 2019
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2019.

[31] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping
Liu. FreeGuard: A Faster Secure Heap Allocator. In Proceedings of
the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, October–November 2017.

[32] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping
Liu. Guarder: A Tunable Secure Allocator. In Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, August 2018.

[33] Matthew S. Simpson and Rajeev K. Barua. MemSafe: Ensuring the
Spatial and Temporal Memory Safety of C at Runtime. Softw. Pract.
Exper., 43(1), January 2013.

[34] Alexander Sotirov. Heap Feng Shui in JavaScript. https:
//www.blackhat.com/presentations/bh-europe-07/
Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf,
2007. BlackHat Europe.

[35] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan:
Scalable Use-after-free Detection. In Proceedings of the 12th European
Conference on Computer Systems (EuroSys), Belgrade, Serbia, April
2017.

[36] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan
Zhang, and Dawu Gu. From collision to exploitation: Unleashing use-
after-free vulnerabilities in linux kernel. In Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
Denver, Colorado, October 2015.

https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
http://jemalloc.net/
https://github.com/cirosantilli/parsec-benchmark/issues/3
https://github.com/cirosantilli/parsec-benchmark/issues/3
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
http://www.malloc.de/en/
http://www.malloc.de/en/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/SamAinsworth/Markus-sp2020/issues/2
https://github.com/SamAinsworth/Markus-sp2020/issues/2
https://github.com/SamAinsworth/Markus-sp2020/issues/1
https://github.com/SamAinsworth/Markus-sp2020/issues/1
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://linux.softpedia.com/get/Programming/Debuggers/Electric-Fence-3305.shtml
https://linux.softpedia.com/get/Programming/Debuggers/Electric-Fence-3305.shtml
https://github.com/shellphish/how2heap
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

[37] Yves Younan. FreeSentry: Protecting against Use-After-Free Vulnera-
bilities Due to Dangling Pointers. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[38] Insu Yun. Another unexpected behavior in markus allocator. https:

//github.com/SamAinsworth/Markus-sp2020/issues/3.

[39] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic Techniques to
Systematically Discover New Heap Exploitation Primitives. In Pro-
ceedings of the 29th USENIX Security Symposium (Security), August
2020.

https://github.com/SamAinsworth/Markus-sp2020/issues/3
https://github.com/SamAinsworth/Markus-sp2020/issues/3

A Statistics of SPEC CPU2006 Benchmarks

Table 7: Statistics of SPEC CPU2006 benchmarks. Function Count lists the number of calls to memory management functions, including
malloc, free, realloc and calloc. Note that some invocations of malloc come from realloc and calloc. Memory Usage column shows
the memory requested by and allocated to the program. total_req means the sum of all requested memories, without considering any free
operation. total_alloc is similar to total_req, but each allocation size is aligned to 16 bytes. max_alloc shows the largest memory usage
along the execution, if every allocation is aligned to 16 bytes. Time provides the time for each program complete the execution. Alloc Freq
shows the average memory request per second.

Program Function Count Memory Usage Time Alloc Freq
#malloc #realloc #calloc #free total_req total_alloc max_alloc (s) (MB/s)

400.perlbench 353M 12M 3 347M 15.97 G 18.28 G 1.08 G 551 33.2
401.bzip2 174 0 0 144 3.64 G 3.64 G 3.53 G 758 4.8
403.gcc 28M 45K 4726K 28M 741.09 G 741.32 G 4.18 G 516 1436.7
429.mcf 8 0 3 7 1.76 G 1.76 G 1.76 G 460 3.8
433.milc 6521 8 6513 6466 88.32 G 88.32 G 719.37 M 934 94.6
444.namd 1328 0 0 1323 47.15 M 47.15 M 47.13 M 612 0.1
445.gobmk 607K 52K 317K 607K 1.07 G 1.07 G 130.49 M 689 1.6
447.dealII 151M 0 1 151M 11.38 G 12.47 G 827.44 M 576 21.6
450.soplex 247K 75K 4 236K 49.31 G 49.31 G 849.80 M 419 117.7
453.povray 2443K 46K 0 2416K 82.92 M 95.24 M 3.60 M 341 0.3
456.hmmer 2419K 369K 123K 2107K 2.52 G 2.70 G 36.62 M 638 4.2
458.sjeng 6 0 0 2 180.00 M 180.01 M 180.01 M 809 0.2
462.libquantum 142 58 121 121 1.04 G 1.04 G 100.67 M 1641 0.6
464.h264ref 178K 0 171K 178K 1.40 G 1.40 G 112.16 M 903 1.6
470.lbm 7 0 0 6 428.81 M 428.82 M 428.81 M 684 0.6
471.omnetpp 267M 0 8 267M 44.65 G 46.76 G 154.68 M 579 80.8
473.astar 4802K 0 6 4802K 4.39 G 4.40 G 451.55 M 610 7.2
482.sphinx3 14M 0 14M 14M 16.15 G 16.23 G 43.04 M 807 20.1
483.xalancbmk 135M 0 8 135K 6.28 G 66.66 G 383.47 M 339 196.6

B Proof-of-Concept of MarkUs Exploit
1 class Victim {
2 public:
3 virtual void good() { puts("Hello World"); };
4 };
5 void evil() {
6 puts("[!] Spawning shell...");
7 execve("/bin/sh", NULL, NULL);
8 }
9 int main() {

10 Victim *a = new Victim();
11 Victim *b = new Victim();
12 + printf("[+] a = %p, a.vftable = 0x%lx\n",
13 + a, ((uintptr_t*)a)[0]);
14 free(a);
15 free(b);
16 + printf("[+] a = %p, a.vftable(corrupted) = 0x%lx\n",
17 + a, ((uintptr_t*)a)[0]);
18

19 + const size_t kSpraySize = 0x300000000;
20 + uint8_t *spray = (uint8_t*)malloc(kSpraySize);
21 + uintptr_t offset = ((uintptr_t*)a)[0] & 0xfff;
22 + assert(offset == 0x3de); // offset is always constant
23 + for (size_t i = 0; i < kSpraySize; i += 0x1000)
24 + ((uintptr_t*)(spray + offset))[i / 8] = (uintptr_t)evil;
25 + printf("[+] Spray at %p - %p\n", spray, spray + kSpraySize);
26

27 + // Make sure that ’a’ is not reclaimed
28 + assert((void*)a < spray || (void*)a >= spray + kSpraySize);
29 + puts("[+] Triggering UAF (virtual function call)!");
30 a->good();
31 }

Figure 8: A use-after-free bug and its exploitation for MarkUs.
The code snippets after the plus sign (+) represents exploitation and
shows internal information to make PoC more clear.

1 $ lsb_release -d
2 Description: Ubuntu 18.04 LTS
3 $ g++ -o poc poc.cpp
4 $ LD_PRELOAD=$MARKUS ./poc
5 [+] a = 0x55c80d35eff0, a.vftable = 0x55c80ce3bd70
6 [+] a = 0x55c80d35eff0, a.vftable(corrupted) = 0x55cad2e9f3de
7 [+] Spray at 0x55c80d39a000 - 0x55cb0d39a000
8 [+] Triggering UAF (virtual function call)!
9 [!] Spawning shell...

10 $

Figure 9: Results after executing PoC code in Figure 8 in
Ubuntu 18.04. This demonstrates arbitrary code execution by in-
voking evil(). Unlike an ordinary allocator that requires to reclaim
the freed object, this PoC program uses heap spray to control the
virtual function table, which is corrupted by MarkUs’s quarantine
management. Note that $MARKUS is the environment variable to make
the PoC program to use MarkUs as its underlying allocator.

	Introduction
	Problem Definition
	A Motivating Example
	Use-After-Free Bugs and Exploits
	Approach Overview
	Threat Model

	Design Space Exploration
	Forward Continuous Allocation
	Mitigation: Batch Processing

	Forward Binning
	Allocator Fusion

	Implementation
	Metadata of Allocations
	Freeing Memory
	Reallocation under OTA
	Supporting Multi-threaded Applications

	Security Evaluation
	Preventing Use-After-Free Attacks
	Secure for Deployment

	Performance Evaluation
	Single-threaded Benchmarks
	Multi-threaded benchmarks
	Real-world Applications
	ChakraCore
	NGINX

	Optimal Settings of [0.5]FFmalloc

	Discussion
	Other Technical Details
	Suitability

	Related work
	Conclusion
	Statistics of SPEC CPU2006 Benchmarks
	Proof-of-Concept of MarkUs Exploit

