SQUIRREL: Testing Database Management Systems with Language Validity and Coverage Feedback

Rui Zhong*, Yongheng Chen+, Hong Hu**, Hangfan Zhang*, Wenke Lee+ and Dinghao Wu*

*Penn State University, +GeorgiaTech
Why Database Management Systems

- **Popularity.** E.g., there are likely over **one trillion** (1e12) SQLite databases in active use nowadays.
Why Database Management Systems

- **Complexity.** E.g., MySQL has over 4 million LoC. Larger codebases tend to have more bugs.
Challenges in Testing DBMSs

Query processing:
1. Parse
2. Validation
3. Optimization
4. Execution

DBMSs check the input queries for **syntactic** and **semantic** correctness!
Limitations of Existing Approaches

Mutation-based Fuzzing:

2. Pro: adopt feedback mechanism to avoid duplicate efforts.
Limitations of Existing Approaches

Generation-based Fuzzing:

1. Pro: syntax-aware.
2. Con: inefficient.

Unable to guarantee semantic correctness! :(
Our Approach: Squirrel

We take advantages of mutation-based and generation-based techniques.

- generate **syntax-correct** queries.
- adopt **feedback mechanism** to prioritize interesting queries.

Further, we improve **semantic correctness** to help fuzzer reach deep logics.
Overview of Squirrel

```
v0 = (cname, l=0, r=0, op=0, d="id", t=ColumnName);
v1 = (type, l=0, r=0, op.prefix="INT", d=0);
v2 = (column, l=v0, r=v1, op=0);
v3 = (cname, l=0, r=0, op=0, d="class", t=ColumnName);
v4 = (type, l=0, r=0, op.prefix="INT", d=0);
v5 = (column, l=v3, r=v4, op=0);
v6 = (columns, l=v2, r=v3, op.prefix="("", op.middle=",", op.suffix="")");
...
```
Overview of Squirrel

Seed SQL → IR Translation → Syntax-Preserving Mutation → Semantics-Guided Instantiation → Fuzzing → Crashes

Interesting queries:

- **Insertion**
 - SELECT x, x FROM x, x WHERE x.x=x.x ORDER BY x

- **Replacement**
 - SELECT count(x), x FROM x, x WHERE x.x=x.x

- **Deletion**
 - SELECT x, x FROM x, x
Overview of Squirrel

CREATE TABLE x1(x2 INT, x3 INT)
CREATE TABLE x4(x5 INT, x6 INT)
SELECT x7.x8, x9.x10 FROM x11, x12
 WHERE x13.x14=x15.x16
 ORDER BY x17

CREATE TABLE t1(c1 INT, c2 INT)
CREATE TABLE t2(c3 INT, c4 INT)
SELECT t1.c1, t2.c4 FROM t1, t2
 WHERE t1.c1=t2.c3
 ORDER BY t1.c1
Overview of Squirrel

Seed SQL

```
CREATE TABLE stu(id INT, class INT)
CREATE TABLE teacher(id INT, class INT)
SELECT stu.id, teacher.id FROM stu, teacher
    WHERE teacher.class=stu.class
```
IR Translation

CREATE TABLE stu(id INT, class INT)
CREATE TABLE teacher(id INT, class INT)
SELECT stu.id, teacher.id FROM stu, teacher
WHERE teacher.class=stu.class

$v0 = (cname, l=0, r=0, op=0, d="id", t=ColumnName);
v1 = (type, l=0, r=0, op.prefix=""INT", d=0);
v2 = (column, l=v0, r=v1, op=0);
v3 = (cname, l=0, r=0, op=0, d="class", t=ColumnName);
v4 = (type, l=0, r=0, op.prefix=""INT", d=0);
v5 = (column, l=v3, r=v4, op=0);
v6 = (columns, l=v2, r=v3, op.prefix="", op.middle="", op.suffix="");
...
Mutation: Structure-Data Separation

CREATE TABLE stu(id INT, class INT)
CREATE TABLE teacher(id INT, class INT)
SELECT stu.id, teacher.id FROM stu, teacher
 WHERE teacher.class=stu.class

CREATE TABLE x1(x2 INT, x3 INT)
CREATE TABLE x4(x5 INT, x6 INT)
SELECT x7.x8, x9.x10 FROM x11, x12
 WHERE x13.x14=x15.x16
Mutation: Insertion, Replacement and Deletion

CREATE TABLE x1(x2 INT, x3 INT)
CREATE TABLE x4(x5 INT, x6 INT)
SELECT x7.x8, x9.x10 FROM x11, x12
 WHERE x13.x14=x15.x16

CREATE TABLE x1(x2 INT, x3 INT)
CREATE TABLE x4(x5 INT, x6 INT)
SELECT x7.x8, x9.x10 FROM x11, x12
 WHERE x13.x14=x15.x16
 ORDER BY x17
Instantiation

CREATE TABLE t1(c1 INT, c2 INT)
CREATE TABLE t2(c3 INT, c4 INT)
SELECT t1.c1, t2.c4 FROM t1, t2
WHERE t1.c1=t2.c3
ORDER BY t1.c1
Evaluation: New Bugs

Ran Squirrel for 40 days on one 16-core server.

Bugs found in SQLite, MySQL and MariaDB

- 63 unique bugs found & confirmed
- 52 bugs fixed
- 12 CVEs assigned
Evaluation: Contributions of Different Aspects

Compared with Squirrel w/o semantic, Squirrel w/o feedback, Squirrel w/o semantic_syntax.

- Feedback helps achieve $2.0x$ more new edges.
- Syntax correctness helps achieve up to $1.5x$ more new edges.
- Semantic correctness helps achieve up to $1.7x$ more new edges.
Evaluation: Compared With Existing Tools

Compared with SQLSmith, Angora, GRIMOIRE, QSYM, AFL.

- up to $10.9x$ more edges.
- up to $20.9x$ higher syntax correctness.
- up to $243.9x$ higher semantic correctness.
Summary

- Squirrel is a general Database Management System testing framework
 - Reach source code at https://github.com/s3team/Squirrel.
- Generate high-quality SQL test cases.
 - well-structured
 - semantic correct
 - efficient
- Discovered bugs in popular DBMSs
 - 63 bugs confirmed
 - 12 CVEs assigned
Q&A