
Identifying Behavior Dispatchers for Malware Analysis
Kyuhong Park

Georgia Institute of Technology
kpark302@gatech.edu

Burak Sahin
Georgia Institute of Technology

buraksahin@gatech.edu

Yongheng Chen
Georgia Institute of Technology

ne0@gatech.edu

Jisheng Zhao
Georgia Institute of Technology
jisheng.zhao@cc.gatech.edu

Evan Downing
Georgia Institute of Technology

edowning3@gatech.edu

Hong Hu
Penn State University
honghu@psu.edu

Wenke Lee
Georgia Institute of Technology

wenke@cc.gatech.edu

Abstract

Malware is a major threat to modern computer systems. Malicious
behaviors are hidden by a variety of techniques: code obfuscation,
message encoding and encryption, etc. Countermeasures have been
developed to thwart these techniques in order to expose malicious
behaviors. However, these countermeasures rely heavily on identi-
fying specific API calls, which has significant limitations as these
calls can be misleading or hidden from the analyst. In this paper,
we show that malicious programs share a key component which
we call a behavior dispatcher, a code structure which is intercepted
between various condition checks and malicious actions. By identi-
fying these behavior dispatchers, a malware analysis can be guided
into behavior dispatchers and activate hidden malicious actions
more easily.

We propose BDHunter, a system that automatically identi-
fies behavior dispatchers to assist triggering malicious behaviors.
BDHunter takes advantage of the observation that a dispatcher
compares an input with a set of expected values to determine which
malicious behaviors to execute next. We evaluate BDHunter on
recent malware samples to identify behavior dispatchers and show
that these dispatchers can help trigger more malicious behaviors
(otherwise hidden). Our experimental results show that BDHunter
identifies 77.4% of dispatchers within the top 20 candidates discov-
ered. Furthermore, BDHunter-guided concolic execution success-
fully triggers 13.0× and 2.6× more malicious behaviors, compared
to unguided symbolic and concolic execution, respectively. These
demonstrate that BDHunter effectively identifies behavior dis-
patchers, which are useful for exposing malicious behaviors.

CCS CONCEPTS

• Security and privacy → Intrusion/anomaly detection and mal-
ware mitigation; Malware and its mitigation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3457894

KEYWORDS

Malware Analysis; Trigger-based Malicious Behaviors; Identifica-
tion of Behavior Dispatcher; Program Analysis

ACM Reference Format:

Kyuhong Park, Burak Sahin, Yongheng Cheng, Jisheng Zhao, Evan Down-
ing, Hong Hu, and Wenke Lee. 2021. Identifying Behavior Dispatchers for
Malware Analysis. In Proceedings of the 2021 ACM Asia Conference on Com-
puter and Communications Security (ASIA CCS ’21), June 7–11, 2021, Hong
Kong, Hong Kong. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3433210.3457894

1 Introduction

Malware has been a major threat to computer systems for decades,
consistently jeopardizing millions of victims [22]. Even worse, com-
panies can receive up to 350,000 malware samples every day [3].
To handle such a large volume of samples, automated dynamic mal-
ware analysis systems tend to be a popular solution. However, it is
challenging to unveil malicious behaviors automatically because
malware often contains behaviors that are activated only when
appropriate triggering conditions are satisfied, called trigger-based
behaviors [11, 43]. The trigger-based behaviors tend to come after
a wide spectrum of evasion techniques, such as interacting with a
command-and-control (C2) server and probing its execution envi-
ronment. These techniques usually involve common computational
tasks, which are difficult to analyze or bypass automatically, like
encryption and checksums. In this paper, we collectively call these
techniques and tasks checks.

Prior works attempt to detect and mitigate various types of com-
plex checks [12, 23, 24] or fulfill triggering conditions by using
API call-guided techniques [11, 28] atop fuzzing [8, 44] or sym-
bolic execution [14, 36]. These approaches start from a predefined
set of suspicious API calls and identify their invocations by stati-
cally dissecting a malware binary and dynamically executing the
binary. Those invocation sites will then serve as entry-points to
facilitate further dynamic analyses, such as fuzzing and concolic
execution, for triggering malicious behaviors. However, these ap-
proaches have two limitations. First, malware commonly adopts
evasion techniques to hide invocations of suspicious API calls [9].
Thus, only a small portion of API calls will be identified due to
low code coverage [15]. Second, complex checks render the above

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

759

https://doi.org/10.1145/3433210.3457894
https://doi.org/10.1145/3433210.3457894
https://doi.org/10.1145/3433210.3457894

approaches difficult in practice because there can be complicated
checks between malicious actions and invoked API calls. Bypassing
complex checks is difficult for prior solutions, thus the malicious ac-
tions can be unreachable [5, 20]. For example, malware L0rdix RAT
uses AES to decrypt its C2 messages and verifies their integrity
using sha256. API call-guided approaches typically fail to pass this
check and thus miss malicious behaviors.

Given these limitations, we examine malware source code and
malware samples from a public malware database [29] to under-
stand how malicious actions are triggered. Our key observation
is that the trigger-based malicious actions are usually grouped to-
gether and are immediately preceded by various path selection opera-
tions. We call these operations a behavior dispatcher, as it is the last
roadblock before reaching the trigger-based behaviors. For instance,
a bot often ships with a command dispatcher that receives various
commands from the C2 server, compares the command with the ex-
pected values, and triggers the appropriate behaviors. These three
actions denote the pattern to identify a behavior dispatcher. Further,
we generalize the behavior dispatchers as a common control-flow
pattern that can be identified via pattern matching on a control-flow
graph (CFG): 1 it contains a set of conditional branch operations
that are defined by branch conditions, 2 it directs program execu-
tion to a malicious action once the condition is satisfied, and 3 if
the match fails, it proceeds to the next check.

In this paper, we introduce BDHunter, a system that effec-
tively identifies behavior dispatchers in trigger-based malware.
We demonstrate that guiding a program execution to behavior dis-
patchers in a malware analysis system can help unveil trigger-based
malicious behaviors. BDHunter uses two algorithms to detect be-
havior dispatchers: one based on control-flow pattern matching
and another based on weighted API calls. In the pattern-based ap-
proach, BDHunter constructs the CFG from a malware sample
and performs intra-procedural dataflow analysis to identify code
blocks matching the dispatcher pattern. In the weight-based ap-
proach, BDHunter assigns each API call an initial weight based on
its importance for constructing malicious actions and aggregates
these weights to the callers of these API calls. If the suspicious
API calls can be collected while dynamically executing a malware
sample, BDHunter utilizes both of these approaches to produce a
set of candidate behavior dispatchers although the weight-based
approach is mainly used to enhance the pattern-based approach.
Otherwise, BDHunter uses the pattern-based approach to generate
a set of candidate behavior dispatchers.

Overall, we evaluate BDHunter’s performance in 1 identifica-
tion of behavior dispatchers and verification of the results on 302
real-world malware samples chosen from VirusTotal [40]; 2 use-
fulness of the identified behavior dispatchers in concolic execution
(as an application of BDHunter), which can be used to guide the
execution to trigger malicious behaviors; 3 robustness against
adversarial attacks that target to evade BDHunter. Our experi-
mental results show that BDHunter is effective and efficient in
behavior dispatcher identification as well as revealing trigger-based
malicious behaviors with BDHunter-guided concolic execution.
Furthermore, we show that BDHunter is robust against adversarial
attacks that attempt bypass identification of behavior dispatchers.

In summary, we make the following contributions:

• We propose a practical approach to identify behavior dispatchers,
the last roadblock before reaching malicious behaviors.

• We prototype our approach as BDHunter1, a system that auto-
matically detects behavior dispatchers from malware.

• We demonstrate the application of behavior dispatchers in help-
ing expose hidden malicious behaviors.

• We evaluate our tool on 302 recent real-world malware samples.

2 Problem and Approach

In this section, we describe our motivation for detecting behavior
dispatchers in trigger-based malware and discuss limitations of
existing solutions, which fail to handle complicated checks. Then,
we show how behavior dispatchers help reveal stealthy actions.

2.1 Motivating Example

Figure 1 shows the source code and CFG of a malware sample (sim-
plified) from the Dexter malware family, which contains trigger-
based malicious behaviors as well as complicated checks. In Fig-
ure 1b, each rectangle represents one basic block, and its labels
correspond to the line numbers in the source code in Figure 1a.
Starting from the function entry HttpMain, the execution retrieves
the private key (line 4) and the OS version (line 5), and compares
the version to the expected value (line 6) at block L4. If the version
matches, it goes to block L7 to receive a command from the C2
server (line 7). If not, the malware will immediately exit at block L6
to avoid introducing observable malicious behaviors. After decrypt-
ing and verifying the command via RSA and sha256 at block L8 (line
8), the execution walks through a sequence of basic blocks L9, L11,
and 13 (line 9, line 11, and line 13, respectively), each comparing
the command (register edx in assembly code and pCMD in source
code) with a trigger value. If they match, the malware invokes the
corresponding function to complete the command: e.g., updating
the address of the C2 server at block L10 (line 10), checking the
aliveness of the C2 server at block L12 (line 12), or downloading new
malware at block L14 (line 14). Otherwise, it proceeds to the next
check. Through the malware sample, we observe that its malicious
behaviors include at least Update, Checkin, and Download. A failure
to reveal any of these behaviors may construct a weak defense.

2.2 Limitations of Existing Methods

Existing works attempt to either mitigate evasive logic (e.g., de-
tecting running environment) or fulfill triggering conditions (e.g.,
feeding proper inputs) atop symbolic execution or fuzzing to unfold
malicious behaviors. However, each approach cannot easily trigger
malicious behaviors from malware [5, 6, 32]. The reason is that
malware tends to include 1 a combination of multiple evasion
techniques and 2 complex computational tasks, including the en-
cryption/decryption of data and the computation of hashes. We call
these checks in malicious code. Unless all complicated checks are
satisfied and mitigated one by one, the analysis techniques cannot
reach the location of conditions that trigger malicious actions.

For example, at line 6 of Figure 1a, the malware requires the OS
version to be a specific 32-bit value. Fuzzing techniques are well-
known to be inefficient in solving these complicated checks [20].
Therefore, fuzzing-based explorations will likely get stuck on path

1The source code of BDHunter can be found at https://github.com/kp2bit/bdhunter

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

760

https://github.com/kp2bit/bdhunter

1 void HttpMain() {
2 char Commands[255], Url[255];
3 char *pCMD = &Commands;
4 char *pKey = GetPrivateKey();
5 DWORD dwVersion = GetVersion();
6 if (dwVersion != 0xDEADBEEF) exit();
7 while (GetCommand(Url, pCMD) != 0) {
8 dec_sha256_RSA(&pCMD, &pKey);
9 if (!_LSTRCMP(pCMD, CMD_UPDATE))
10 Update(Url);
11 else if (!_LSTRCMP(pCMD, CMD_CHECKIN))
12 Checkin();
13 else if (!_LSTRCMP(pCMD, CMD_DOWNLOAD))
14 Download(Url);
15 ...
16 }}

(a) Simplified malware source code

F

T

T

mov ecx, dword [ebp-0x58];

test eax, eax; je L10

L9:

push ecx; push edx;

push ecx; push edx;
mov ecx, dword [ebp-0x50];

call sub_402490 //_LSTRCMP

mov ecx, dword [ebp-0x54];
push ecx; push edx;
call sub_402490 //_LSTRCMP

L11:

test eax, eax; je L12

call sub_402490 //_LSTRCMP
test eax, eax; je L14

L13:

L10:

//Update()

//Checkin()

//Download()

L12:

call sub_406150

call sub_401750

call sub_4060a0
L14:T

F

L7:
call sub_405c60

HttpMain

L4:

call sub_404aa3

test eax, 0xdeadbeef
je L7

call sub_404124

L1:

L6:
call sub_403510 //exit()

F

T

L8:
call sub_405ca0

F

/** side note:
[ebp-0x50]=CMD_UPDATE
[ebp-0x54]=CMD_CHECKIN
[ebp-0x58]=CMD_DOWNLOAD
edx = pCMD
**/;

//dec_sha256_RSA()

//GetCommand()
//GetPrivateKey()

//GetVersion()

(b) Simplified malware control-flow graph

Figure 1: Source code and control-flow graph of a simplified malware. This malware accepts commands from its C2 server, decrypts each command
through the private key and sha256, and dispatches the execution accordingly. It only works on a particular Windows version (e.g., 0xDEADBEEF). In the
control-flow graph, the red polyline indicates a condition that is hard to satisfy by program analysis techniques.

HttpMain→L4→L6 andwill not trigger branch L4→L7 (the red poly-
line in Figure 1b). Symbolic execution is good at solving these
constraints of value comparisons [5] and thus can trigger branch
L4→L7. However, symbolic execution can have large computation
and memory costs due to path explosion, and thus cannot efficiently
handle computation-intensive calculations, such as checks [5]. Al-
though [12] tries to overcome encoding and encryption-related
challenges by introducing a decomposing and re-stitching tech-
nique, this technique is required to identify the inverse functions of
encryption and encoding functions to complete re-stitching. How-
ever, identifying the inverse function is difficult if malware authors
use a customized encryption function [42]. Worse, an inverse func-
tion may not exist if the malware uses asymmetric encryption (e.g,
RSA). At line 8 of Figure 1a, the malware decrypts and verifies the
command with RSA and sha256, which will prevent existing sym-
bolic execution tools [5] from triggering condition block L8 (another
polyline in Figure 1b). The computation and memory overheads
make these methods infeasible to analyze real-world malware that
have significantly more checks than this example.

Existing approaches rely on identifying a set of suspicious API
calls, which are predefined by security analysts based on their
domain expertise. For example, analysts treat HttpOpenRequestA as
a suspicious API call, as it may enablemalware to communicate with
its C2 server. These approaches will perform traditional analysis
techniques starting from where the API calls return. In Figure 1a,
function GetCommand receives a command by invoking network API
calls HttpSendRequest and InternetGetCookie (not shown in the
figure). Existing techniques will identify these two suspicious API
calls and begin analysis after returning from GetCommand.

Unfortunately, API call-guided approaches have two major limi-
tations. First, they require the malware to explicitly invoke prede-
fined API calls, such as HttpSendRequest to receive network pack-
ets. However, malware tends to hide them by obfuscating API call
names [9]. For example, malware Carbanak stores encrypted API
call names in its binary and will dynamically decrypt the name and
resolve the API call address by calling GetProcAddress. Thus, static
malware analysis cannot be guaranteed to find any meaningful API
call names. Although dynamic execution can resolve the obfuscated
API calls, it can only observe the ones invoked during execution,
which can suffer from low code coverage [15]. Second, even if we

discover suspicious API calls, the malware may still contain a large
number of complicated checks between more suspicious API invo-
cations and launching its actions. For example, the API call-guided
exploration will help the analysis skip branch L4->L7, but there is
another roadblock, L8->L9, concealing more malicious actions.

2.3 Hunting Behavior Dispatchers

Although the advantage of API call-guided techniques comes from
their ability to skip complicated checks (i.e, skipping branch L4→L7),
API call-guided methods only skip checks between the malware
entry point and suspicious API calls. Conservativeness is desired
here because if we skip too many checks, our analysis may miss
behaviors that are only reachable from anterior locations. In the
ideal case, instead of focusing on mitigating the combinations of
complicated checks one-by-one, we would fast-forward our analysis
to the location that can reach all malicious behaviors.

Through manual analyses on 21 malware source codes and 31
malware samples (§A.3), we identified a generic component that
can help skip more checks and still reach conditions that trigger
malicious actions. We call this component behavior dispatcher. A
behavior dispatcher contains many conditional branch operations
(a set of instructions that direct the program execution regarding
the branch condition). Each of those operations checks a common
variable with a value that satisfies the condition that triggers a
malicious action, called a trigger value. If the condition is satisfied,
the execution is directed to the branch that triggers the malicious
action. Otherwise, the execution proceeds to the next conditional
branch operation. This process continues until all conditions fail.

Here we give the formal definition of behavior dispatchers and
its relevant terms used in this paper. Behavior dispatchers are com-
posed of a set of execution paths obtained from malware. Each
execution path (denoted by p) in the behavior dispatchers is pre-
sented as a sequence of basic blocks. See the definition below:

Definition 2.1 (Conditional Branch Operation). a code section
that justifies the branch target selection, denoted by CondBrOp, lo-
cated at a basic block, presented as a comparison operationCmpOp
that affects branch condition, and a branch instruction BrInst that
directs the execution to the satisfied path.

Definition 2.2 (Common Variable). a program identifier, denoted
by CommVar , presented as a variable that is used by multiple

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

761

Malware
Binary

Tracer

Disassemblers

BDHunter

Concolic
Exeution

ir info

trace

Pattern-based

Weight-based

Identifier

blocks
variables

functions

dispatchers

Application

Unpacked
Binary

Figure 2: Overview of BDHunter and its application. Our system takes unpacked malware binaries as input. It collects both static information (such as
CFGs) with a disassembler and dynamic information (such as the invoked API calls) using a tracer. It then feeds the static information into the pattern-based
identifier and the dynamic information into the weight-based identifier when the suspicious API calls can be collected. The two identifiers generate a list of
candidate behavior dispatchers. Concolic execution can utilize the dispatcher information to expose malicious behaviors in malware samples.

CondBrOps in a path p for justifying their following branch target
selection.

Definition 2.3 (Behavior Dispatchers). behavior dispatchers are
denoted by S , presented as a set of paths: p0, p1, ... pn . Each path pi
is composed with a set of basic blocks that contain eitherCondBrOp
or CommVar .

In practice, a conditional branch operation presents the code pat-
tern for the trigger-based malicious behavior in malware samples
(i.e., its branch condition presents the comparison between the input
variable and a trigger value). To get a better understanding of the
definition of behavior dispatcher, we use Figure 1 as an example. In
Figure 1, lines 9, 11, 13 form a behavior dispatcher, which contains
three sequential conditional branch operations (blocks L9, L11, and
L13 in Figure 1b) that compare the common value pCMD (i.e., [edx]
in assembly code) with the trigger values CMD_UPDATE, CMD_CHECKIN,
CMD_DOWNLOAD, respectively (i.e., [ebp-0x50], [ebp-0x54], [ebp-0x58]
in assembly code). The comparison operation in the figure is per-
formed by calling _LSTRCMP, or the call instruction to sub_402490
in assembly code, and the return value is used in a comparison
instruction (i.e., the test instruction) that affects branch condition.
The branch instruction (i.e., the je instruction) directs the program
execution to the satisfied path. Once a condition matches, the code
will run one malicious action. Starting from the dispatcher, we can
now perform program analysis techniques, as many roadblocks
have been skipped. In the example above, starting from block L9,
both fuzzing and symbolic execution can explore paths easily.

As shown in Table A.1, BDHunter can identify seven categories
of behavior dispatchers that are related to C2 commands, file sys-
tems, processes, network, registry, time, and system environment.
C2-related dispatchers usually wait for a list of commands from the
C2 server and launch specified actions. A file system-related and
registry-related dispatcher checks the status of some particular files
or registries, such as the existence of a log file indicating the system
has been compromised. Network-related dispatcher are activated
when the malware send/receive specific packets. A time-related
dispatcher triggers malicious actions only at a particular time. An
environment-related dispatcher might only unfold a malicious be-
havior if the underlying system matches the specific version, like
the code in Figure 1. Our experiments show that if malware con-
tains at least one of the seven behavior dispatchers, BDHunter is
able to identify them within the malicious binary.

3 BDHunter

Figure 2 shows the pipeline of BDHunter. The goal of BDHunter
is to automatically identify behavior dispatchers in trigger-based
malware. BDHunter takes an unpacked malware binary as input

and outputs a list of candidate behavior dispatchers, which includes
the candidate’s related functions, basic blocks, and variables. The
behavior dispatchers can then assist program analysis techniques,
such as concolic execution, to trigger hidden malicious actions.
BDHunter takes two steps to identify dispatchers from a given
malware sample. First, it analyzes malware program structures
and collects relevant information via static analysis and dynamic
execution (§3.1). Second, with the extracted dynamic and static
information, BDHunter applies two heuristic-based algorithms
to identify behavior dispatchers: one is based on the unique code
pattern of behavior dispatchers (§3.2), while another relies on a
weighting scheme to score each function (§3.3).

3.1 Malware Information Collection

The first step of identifying behavior dispatchers is to collect pre-
liminary information from a malware sample, including invoked
API calls from dynamic execution and control-flow graphs from
static analyses. BDHunter uses a dynamic analysis environment
to collect runtime information and to record the invoked API calls.
Our recording does not seek to obtain a complete set of suspi-
cious API calls, but simply collects as many as possible to improve
the weight-based method. During the static analysis, BDHunter
utilizes a disassembler to lift the malware binary into an interme-
diate representation (IR). The IR analysis performs four tasks: 1
extracting auxiliary information, including symbols, import and
export tables; 2 detecting and removing irrelevant functions that
are borrowed or inlined from well-known libraries and thunks;
3 identifying variables (e.g, local, stack, global) and basic blocks
that are related to conditionals, load & store, and comparisons to
identify CondBrOps and CommVars; 4 constructing control-flow
and call graphs by leveraging IR and execution traces.

BDHunter leverages BinaryNinja [39], an industry-standard
disassembler, and its IR, called BNIL. BNIL provides a more abstract
semantic representation of the assembly instructions (e.g., x86 and
x86-64) by mapping assembly instructions to IR instructions [39].
With BNIL, BDHunter can efficiently identify instructions that are
related to conditionals, load & store, and comparisons.

3.2 Pattern-based Identification

The pattern-based method statically searches within the malware
binary to identify basic blocks with dispatcher patterns: a behavior
dispatcher contains a set of CondBrOps, each which compares the
CommVar with a trigger value.

Algorithm 1 details the algorithm of our pattern-based identifica-
tion. Function PatternBasedIdentifier takes the CFG of each func-
tion as input and outputs a list of candidate behavior dispatchers. It
initializes several local variables and then invokes CheckOneBlock

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

762

(line 4). S contains identified behavior dispatchers; path is an ex-
ecution path that contains two data structures: one is a list of all
blocks in the current path, and another is a set of blocks that have
CondBrOps, called xBBs in the path. CheckOneBlock examines the
current block and recursively handles all successor blocks.

First, it checks whether the current BB contains CondBrOp (line
7). Figure 1b show that a set of blocks (block L9, L11, and 13) use a
call instruction (i.e. the CmpOp) to compare the command (register
edx, the CommVar in the set of call instructions) with a trigger
value. The following comparison and conditional branch instruc-
tions, which areCmpOps and BrInsts, will then use the call instruc-
tion’s return value to justify which branch should take. Instead
of relying on comparison-related API calls, BDHunter looks for
the CondBrOp pattern that presents as the CommVar shared by a
set of CmpOps (i.e. either call instructions or comparison instruc-
tions) that impacts the following branch target selection. This is be-
cause we cannot guarantee to identify comparison-related API (e.g.,
STRCMP) calls due to embedded string obfuscation or customized
comparison functions. In the example, although the malware source
code uses a well-known comparison function (e.g., LSTRCMP), Fig-
ure 1b shows the LSTRCMP as sub_402490 due to the reasons above.

If the current BB contains CondBrOp, we add BB into the current
path’s basic block list BBs and its CondBrOp into CondBrs set (line
8-9). Otherwise, only BB is added into BBs (line 11). If the current
path contains more than WSize blocks — the minimum size of a
behavior dispatcher— we check whether it contains enough blocks
with CondBrOps (line 13) and whether all blocks with conditions
share someCommVars (line 14). Here, WSize is the number of basic
blocks inside the path, while Kcmp is a threshold defined by our
observation of the 52 malware samples that we studied (see details
in §3.2.2). If so, we merge the current path into S, the set of candi-
date behavior dispatchers (line 15). Note that merge is not simply
inserting path into S. Instead, we merge two paths via a shared
CommVar , denoted as pr = merge(pi , pj , CommVar). If both pi and
pj share a CommVar in some of their CondBrOps, then pi , pj are
merged into a single path pr that preserves the CondBrOps that
uses the CommVar . For the uncommon operations between those
CondBrOps, the longer path is selected. In this way, we can prevent
one long dispatcher from being split into several smaller chunks.

After checking the current block BB, CheckOneBlock removes
the header of path’s BBs and its relevant CondBrOps from xBBs to
reduce the complexity (line 16-17) and invokes itself to recursively
handle all successors one by one (line 18-19). Note that we duplicate
path for the recursive call to guarantee a new path is expanded, as
CheckOneBlock may update them, as in line 8 and line 16. By apply-
ing PattenBasedIdentifier on all functions in the malware sample,
the pattern-based method can find candidate behavior dispatchers.
All of those identified candidates are sorted by their total number
of basic blocks and the ratio of CondBrOps. This assigns higher
priority to those candidates with more basic blocks over ones with
fewer. In the case that two candidates have the same number of
basic blocks, the one which has more CondBrOps is considered for
assigning higher priority.

3.2.1 Behavior Dispatchers via Tight Loops. Figure A.2 shows the
source code and the CFG of a Zeusmalware sample which has a dif-
ferent dispatcher pattern compared to the one we discussed before.

Algorithm 1: Pattern-based Dispatcher Identification
Input :CFG :- control-flow graph of a function
Output :S :- the set of candidate behavior dispatchers

1 Procedure PatternBasedIdentifier(CFG)
2 S = ∅; path.BBs = ∅; path.CondBrs = ∅;
3 BB = getEntryBlock(CFG);
4 CheckOneBlock(S, CFG, BB, dup(path));
5 return S;

6 Procedure CheckOneBlock(S, CFG, BB, path)
7 if hasCondBr(BB) then
8 path.BBs.append(BB);
9 path.CondBrs.append(getCondBr(BB));

10 else

11 path.BBs.append(BB);
12 if path.BBs.length() > WSize then
13 if path.CondBrs.length() > Kcmp * WSize then
14 if hasCommVar(path.CondBrs) then
15 S.merge(path)
16 topBB = path.BBspopFront();
17 path.CondBrs -= getCondBr(topBB);
18 foreach succBB ∈ getSuccessors(BB) do
19 CheckOneBlock(S, CFG, succBB, dup(path))
20 return;

Instead of having many CondBrOps in the code, it implements a
compare-dispatch routine with one compare instruction and one
indirect function call inside of a loop. In Figure 4a, for each itera-
tion of the loop (lines 5-9), it compares the command cmd with one
element (a trigger value) of the array cmds (line 7). If the condition
is satisfied, Zeus indirectly jumps to the function that implements
the malicious actions (line 8), like execute for running arbitrary
commands. Thus, we adjust Algorithm 1 to detect dispatchers with
such a pattern. In this case, the pattern-based method first analyzes
the given CFG to identify loops that contain comparison instruc-
tions and indirect jumps and calls as CmpOps. Then, the method
calculates the percentage of CmpOps and indirect jumps and calls
for each loop. If the percentage is higher than a threshold Kloop ,
then we treat the loop as a candidate behavior dispatcher (details
in §3.2.2). The variable used in the CondBrOps is the triggering
condition, while the indirect call is used to launch actions.

3.2.2 Sliding Window and Threshold. Algorithm 1 contains three
user-defined thresholds to detect behavior dispatchers. We choose
these values through the analysis of the 21 source codes and 31
malware samples (§A.3) from [29]. The first threshold, WSize, de-
fines the minimum number of basic blocks inside of a behavior
dispatcher. A larger WSize requires more blocks to haveCondBrOps
and thus may miss some dispatchers with few operations (i.e., false
negatives), while a smaller WSize may introduce too many false
positives. The second threshold, Kcmp , defines the minimum per-
centage of blocks with CmpOps inside a behavior dispatcher. The
last threshold, Kloop , defines the minimum percentage of blocks
withCondBrOps inside the loop for identifying loop-based dispatch-
ers. Through experiments using different threshold values among
the 52 malware samples, we found that the identified dispatchers
usually have at least three basic blocks with 65% of comparison
operations to give the optimal results. Therefore, we set WSize to 3,
Kcmp to 65%, and Kloop to 70% for our evaluation (§5) because they
result in the lowest false positives (FPs) and false negatives (FNs).

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

763

Although none of the 52 samples are used in our evaluation, their
families make up 4.7% of our evaluation dataset (details in §A.4).

3.3 Weight-based Identification

BDHunter collects the invokedAPI calls during dynamic execution
to use for its weight-based identifier. It uses these calls to help
identify behavior dispatchers to improve efficiency and accuracy
on top of the pattern-based approach. The intuition behind the
weight-based identifier is that 1 a behavior dispatcher can reach
many malicious actions, 2 each of its callees can only reach a
part of these actions, and 3 each of its callers can reach the same
number of malicious actions. This intuition works for both patterns
of behavior dispatchers, as shown in Figure 1 and Figure A.2. Once
the code blocks in a function satisfy these three criteria, we treat the
function as a candidate function that contains behavior dispatchers.

The identification of suspicious API calls is important in the
weight-based identifier. We utilize a list of API calls (§A.5) from
a report of a security vendor [17], and the weight for each suspi-
cious API call is based on its importance for construction attacks.
For example, if the malware sample is known to use HTTP-based
C2 communication, a security analyst may assign relatively high
weights on HTTP-related API calls, and low weights on comparing-
related API calls for detecting C2-related dispatchers. Additionally,
users of BDHunter can customize their own set of suspicious API
calls and the weights for each API calls based on their experiences
or their target-specific attacks. We describe the limitations of the
weight-based identifier in §5.1.2.

Algorithm 2 details our algorithm. It takes the CFGs of the whole
program and the weight for each suspicious API call as input. First,
the algorithm iteratively propagates the weight from API calls
or functions to their callers (lines 2-13). Specifically, if all of the
callees of one function have a weight, the algorithm takes the
sum of all weights as the weight of the current function (lines
10 and 12). The weight-based method keeps propagating until it
cannotmake any new updates to any functionweight. Second, (lines
14-22), the method calculates the difference of weights between
callers and callees. diff_callees is the average weight difference
between each function and its callees, which should be a large value
for the dispatcher based on our intuition 2 . diff_callers is the
average weight difference between each function and its callers,
which should be a small number for the dispatcher based on our
intuition 3 . weight_diff is the difference between diff_callees
and diff_callers and should be a large value for the dispatcher
according to intuitions 2 and 3 . Therefore, if the weight_diff
is larger than a threshold, the method treats the current function
as a candidate behavior dispatcher. The method sorts the set of
candidates based on weight_diff and output the result.

3.4 Implementation

BDHunter is implemented in 3,452 lines of Python 3 code, which
utilizes BinaryNinja and BNIL. Further, BDHunter uses IDA Pro
FLIRT [19] to remove irrelevant functions such as well-known
libraries and thunk functions, which optimizes our methods for
better performance. The system leverages DynamoRIO [10] to trace
the malware’s dynamic execution. The current prototype works on
x86 PE binaries. However, it can be easily extended to other archi-
tectures because DynamoRIO supports cross-platform and BNIL

is an architecture-independent IR of machine code and provides a
more abstract semantic than assembly codes (e.g., x86 and x86-64).

4 Revealing Malicious Behaviors

To demonstrate the utility of behavior dispatchers, we apply them
to a concolic execution engine to activate trigger-based malicious
behaviors for malware analysis. Fuzzing [8, 44] and concolic execu-
tion [14, 36] techniques have been applied to benign applications.
Typically, concolic execution requires manual effort to locate the
symbolic source to hit certain targets for discovering vulnerabilities
and new program states. However, performing this manual analysis
in malware can be a tedious and time-consuming job due to evasion
techniques and complicated checks. Moreover, limitations of exist-
ing methods for triggering behaviors discussed in §2.2. Concolic
execution in malware analysis would be more productive in trigger-
ing behaviors if it could automatically identify the target location(s).
This would reduce the manual effort required to locate the symbolic
source to hit the target and overcome existing limitations. The lo-
cation of a dispatcher can be served as the target location to reveal
malicious actions in trigger-based malware. Hence, concolic execu-
tion can leverage the dispatchers to circumvent either unnecessary
or complicated checks to activate trigger-based behaviors.

We developed a custom concolic execution engine to show the
practicality of identifying behavior dispatchers. Our engine is built
on top of DynamoRIO and angr [36], and leverages BDHunter to
direct the execution towards behavior dispatchers. DynamoRIO
runs on Windows 7 in a virtual machine as Concrete Execution
Engine (CEE) and angr runs outside the virtual machine as Symbolic
Execution Engine (SEE). They communicate through gRPC [37].

First, we run the malware in CEE to extract the execution trace.
Second, SEE parses the execution trace and finds the basic block clos-
est to behavior dispatcher. To determine and prioritize the closest
block to behavior dispatcher, we adopt the path selection algorithm
described in AFLGo [8]. SEE computes the distance between the
executed blocks and the dispatcher to find the closest block. Then,
SEE starts its exploration and prioritizes branches closer to the dis-
patcher. At this point, SEE and CEEwork simultaneously. SEE sends
a breakpoint list to CEE which includes the dispatcher, the function
that contains the dispatcher, and the address of the BB closest to
the dispatcher. SEE manages the concrete state in CEE via updating
the memory value, register value, or forcing the conditional branch
in case the constraint solver fails. CEE and SEE iteratively perform
the above process until they reach the dispatcher. Once the func-
tion that contains the dispatcher is reached, SEE symbolizes all the
function arguments and attempts to visit the dispatcher. When a
dispatcher is visited, SEE computes the triggering conditions for
that behavior and sends the memory update command with a trig-
ger value to CEE. When CEE receives the trigger value and register
information, it makes necessary updates and resumes the concrete
execution. With the steps above, the concolic engine tries to find
the triggering conditions in the dispatcher. In summary, the SEE
interleaves the concrete execution at the point of execution clos-
est to the function of behavior dispatchers, and CEE performs the
requests (reads concrete data, updates concrete data, etc.) of SEE.

Though our solution may not identify all triggering conditions
and explore all malicious behaviors, it can extract information (e.g.,
the dispatcher and its latent behaviors) without introducing many

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

764

irrelevant paths or states. The engine outputs various information
such as C2 commands, network activities, and environmental con-
ditions. We can leverage them to apply more intensive concolic
execution techniques by mixing dynamically discovered features
with statically available information. In §5.4, we show the results
of BDHunter-guided concolic execution.

5 Evaluation

We evaluate BDHunter on 302 real-world malware samples to
demonstrate its effectiveness for detecting behavior dispatchers and
helping trigger malicious actions. Our evaluation aims to answer
the following questions:

• Can BDHunter accurately identify behavior dispatchers
from real-world malware samples (§5.1)?

• Is BDHunter scalable to handle a large number of malware
samples (§5.2)?

• Is BDHunter resilient against obfuscation techniques to
attempt to evade the identification of behavior dispatchers
(§5.3)?

• Are behavior dispatchers useful for an application (e.g., con-
colic execution) to reveal more malicious behaviors (§5.4)?

Dataset. For the evaluation of BDHunter, we collected 7,147
malware samples from VirusTotal [40]. We then unpacked our
samples using unipacker [27]. Although it is not as complete as prior
works [13, 16], the tool produces a valid executable if it is successful.
Since unipacker can unpack most of the popular packers used by
malware [38] and is an open-sourced tool, we chose unipacker to
unpack our dataset. Unipacker was able to unpack 4,131 of the 7,147
samples. However, after unpacking, we noticed that a few samples
had invalid PE formats (e.g., invalid sections and start address).
After filtering them out (188 PE files), we apply BDHunter on the
remaining 3,943 malware samples.
Experiment Setup. We use the pattern-based identifier to detect
the seven types of behavior dispatchers with the three thresholds
described in §3.2.2. To measure the weight-based method’s effective-
ness, we utilize the list of API calls (described in §3.3) for identifying
C2-related dispatchers only. Due to their complexity, we did not
attempt to identify other behaviors because of the potential num-
ber of API calls involved [41], although conceptually they can be
explored in future work. Besides, C2 activities are highly related
to trigger-based behaviors. We performed the experiments on a
machine installed with 64-bit Ubuntu 16.04 and equipped with Intel
Xeon Gold 6140 CPU and 500 GB RAM.

5.1 Accuracy of Dispatcher Identification

Ground Truth. Validating BDHunter requires checking 1 the
existence of trigger-based behaviors in a malware sample and 2
that the behavior dispatcher denotes the last roadblock to trigger
malicious behaviors. Since there is no publicly available ground-
truth for us to verify the result and evaluate BDHunter, we have to
build our own ground-truth. Since validating BDHunter requires
manual reverse engineering on eachmalware, we randomly selected
302 samples (out of the 3,943 samples) from 127 distinct malware
families labeled by AVClass [33] as shown in Table 1. We manu-
ally analyzed those samples to validate our results and leveraged
malware analysis reports from a security vendor [17].

Label # Label # Label # Label #

kolabc 49 virut 34 upatre 11 zbot 7
chir 6 crytex 6 scar 6 others 183

Total 302

Table 1: Malware samples and their families.We apply BDHunter on
3,943 malware samples to find behavior dispatchers and analyze the results
of 302 samples from 127 families. §A.4 provides the list of families.

Prioritization and False Positives. To measure the accuracy of
identifying dispatchers, we used BDHunter to identify, at most, the
longest 100 candidate behavior dispatchers per sample (BDHunter
sorts the candidates by their total number of basic blocks as de-
scribed in §3.2). We chose to limit the number of candidates due to
the shear volume and because 1 complicated malware can have
many malicious behaviors triggered by many conditions [18], and
2 some samples have a large number of functions (e.g., we found
7,927 functions in a single sample). Furthermore, we demonstrate
that this threshold does not artificially improve our results.

For each reported candidate from 302 malware samples, our
manual analysis validated that the pattern-based method detects
at least one behavior dispatcher (from each of the seven types)
from 280 samples. The weight-based method identifies C2 dispatch-
ers from 102 samples. However, we identified 10 FPs and 12 FNs
within 22 samples. We carefully inspected these 22 cases. For the
10 FPs, 4 out of the 10 samples do not utilize a dispatcher with
conditional branch operations to trigger malicious behaviors. The
other 6 samples cause a failure due to improper disassemble. For
the 12 FNs, the samples are still either packed or obfuscated. In this
case, the complex form of CFGs with a large number of basic blocks
and edges can cause FNs in BDHunter. Overall, Table 2 shows
that BDHunter detects each of the seven types of behavior dis-
patcher in 302 malware samples. On average, 87.2% of dispatchers
in all the seven types are identified within the top 100 candidates
(meaning that 12.8% of dispatchers are located outside of these
top 100 candidates). At most 10% of dispatchers for each type are
identified outside of the top 100 candidates except for time-related
dispatchers. We discuss potential improvements and the limitations
of BDHunter in §6.

5.1.1 Pattern-based Identification. In this evaluation, we use the
three thresholds described in §3.2.2. The pattern-based method
detects at least one behavior dispatcher in 280 samples (out of the
302 samples). Figure 5a shows that, within the top 20 behavior
dispatcher candidates, BDHunter finds at least one dispatcher in
77.4% of the 280 malware samples. Within the top 100 candidates,
BDHunter identifies at least one dispatcher within 90% of the 280
samples. Figure 5b shows that analyzing only 10% of the candidate
functions in a sample reveals at least one dispatcher in around
90% of the samples. In summary, Figure A.7 shows that BDHunter
greatly reduces the number of functions required for a malware
analysis tool or an analyst to analyze in the samples. This, in turn,
can reduce the amount of time and effort they would spend on
manually identifying a dispatcher.
Per-type Accuracy. Table 2 shows the identified behavior dis-
patchers from all the seven types and the distribution of different
types of behavior dispatchers. C2-related and file system-related

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

765

20 40 60 80 100
0

20
40
60
80

100

%
 o

f m
al

w
ar

e
sa

m
pl

es

C2 related

20 40 60 80 100

Network related

20 40 60 80 100

File system related

20 40 60 80 100

Process related

20 40 60 80 100

Registry related

20 40 60 80 100

Environment related

20 40 60 80 100

Time related

Locations of true-positive behavior dispatcher in top 100 candidates

Figure 3: Distribution of samples with behavior dispatchers of different types, detected by the pattern-based identifier. The x-axis shows how many
top candidates are considered, while the y-axis shows how many samples with behavior dispatchers have been detected.

Dispatcher Types C2 File Network Process Registry Env Time

Dispatchers 265 347 119 98 68 37 24
Samples w/ Dispatchers 202 180 85 81 58 29 18

Table 2: Behavior dispatcher distribution in 302 samples among dif-

ferent types, detected by the pattern-based identifier.

dispatchers are the most popular, while time-related dispatchers
are uncommon in our dataset. Some samples contain multiple be-
havior dispatchers, which may fall into the same type. For example,
BDHunter finds 265 C2-based dispatchers within 202 samples. We
examined these samples further and found that for each command,
the malware accepts sub-commands, where each sub-command dis-
patcher forms a behavior dispatcher and is detected by BDHunter.

Figure 3 shows the distribution of malware samples with differ-
ent types of behavior dispatchers, as detected by BDHunter. For
example, for C2, network, and file system dispatchers, their sam-
ples share similar distributions: in 74% of all samples, BDHunter
identified a dispatcher within the top 30 candidates, while this per-
centage slowly increases to 90% when we consider the top 100 can-
didates. For process and registry dispatchers: in 70% of all samples,
BDHunter identified a dispatcher within the top 30 candidates.

5.1.2 Weight-based Identification. Our weight-based identifier de-
tects C2-related dispatchers in 102 out of the 302 malware samples.
Since the pattern-based method identifies C2-dispatchers within
202 samples, this means that our weight-based methodmissed those
dispatchers in 100 samples. We have categorized these FNs into
three cases: 1 usage of string obfuscation or dynamic loading to
hide API calls, 2 disconnected caller and callee due to indirect
calls, and 3 pre-defined suspicious API calls that are irrelevant
in triggering malicious behaviors. For example, malware Carbanak
uses complex string obfuscations with a combination of encryption
and hashing to hide API calls. Figure 6a shows the distribution of
102 samples among the top 100 candidates. This figure shows that
in over 78.4% of samples, BDHunter identified a dispatcher within
the top 20 candidates and discovered dispatchers in almost all the
samples when increasing to the top 100 candidates.

5.1.3 Comparison between the two methods. Figure 6b shows the
comparison between the two methods for detecting C2 dispatch-
ers among samples which contained API calls. The weight-based
method can detect the behavior dispatchers within the top 20 can-
didates consistently across 102 samples, while the pattern-based
method may introduce more FPs. As shown in the figure, the
pattern-basedmethod ismore generic than theweight-basedmethod,
where the latter missed C2-dispatchers in 100 samples. The reason
is that the pattern-based method relies on a common pattern within

malware samples while the weight-based method relies on explicit
API calls from the program. However, if suspicious API calls are
explicitly called, the weight-based method can provide more ac-
curate results. Thus, users of BDHunter should consider using
both identification methods to complement each other and improve
accuracy. Both methods can be configured to improve accuracy by
modifying the thresholds and list of suspicious API calls.

5.2 Analysis Efficiency

We measured the performance of BDHunter on the task of detect-
ing behavior dispatchers from 3,943 malware samples. BDHunter
can complete the pattern-based identification in an average of 74.03
seconds and the weight-based identification in an average of 43.85
seconds per malware samples. Thus, BDHunter can handle most
real-world malware samples efficiently and can be used to process
daily-reported malware within a reasonable amount of time.

5.3 Robustness of BDHunter

Adversaries aware of the existence of BDHunter could apply tar-
geted obfuscation techniques to hinder the capabilities ofBDHunter.
To measure the resilience of BDHunter against these techniques,
we evaluate BDHunter on the 20 sample programs from an anti-
analysis benchmark [7] by applying an obfuscation tool: Obfuscator-
LLVM (ollvm) [21]. The programs trigger an action only if a condi-
tion is matched to test the resilience. This is similar to trigger-based
behaviors in malware, which are activated only when appropriate
triggering conditions are satisfied. To realistically mimic trigger-
based behaviors in malware (and not to skew the original code
in the benchmark), we only add more triggering conditions that
are compared with the given input (e.g., each of them triggers a
different action) in the programs. We use ollvm to compile the 20
samples with the following configurations: no obfuscation, instruc-
tion substitution, bogus control flow, and control-flow flattening.

BDHunter correctly detects all behavior dispatchers that con-
tain the inserted triggering conditions in samples with no obfus-
cations. It also successfully finds all of the behavior dispatchers in
the 20 samples in the instruction substitution obfuscation. This is
due to the utilization of an abstract semantic representation of the
assembly instruction from lifting the original binary to IR. For the
bogus control flow obfuscation, BDHunter correctly identifies the
behavior dispatchers in 17 out of the 20 samples. Although this ob-
fuscation method can add bogus basic blocks between conditional
branch operations in behavior dispatchers, the path merging with
CommVar in BDHunter can still alleviate the obfuscation to cor-
rectly detect behavior dispatchers. BDHunter fails on the 3 remain-
ing samples due to not identifying CommVar in the disassembled

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

766

binary. Last, for the control-flow flattening obfuscation, BDHunter
detects the behavior dispatchers in 7 out of the 20 samples. This
obfuscation flattens triggering mechanisms instead of forming se-
quential conditional branch operations with CommVar . Although
this approach violates the dispatcher pattern that BDHunter de-
pends on, BDHunter does detect partial triggering conditions in
the identified behavior dispatchers in the 13 failed samples. In the
worst case scenario, a malware analysis tool can still utilize the
partial conditions in the behavior dispatchers to identify the cor-
responding trigger-based malicious behaviors. Furthermore, code
normalization (composed as loop unrolling, constant propagation,
and dead code elimination) can be applied to improve the resilience
to the control-flow flattening further.

Real-world malware can utilize more advanced obfuscation tech-
niques which can bypass the current version of BDHunter. How-
ever, these results empirically demonstrate that BDHunter is re-
silient against two of the three obfuscation techniques, and provides
partial solutions against the third (control-flow flattening) obfusca-
tion. We discuss limitations of BDHunter in §6.

5.4 Triggering Malicious Behaviors

To understand how behavior dispatchers can help reveal trigger-
based malicious behaviors, we use dispatchers to guide concolic
execution. Our tool is not designed to replace prior work [11, 12, 31],
with regards to triggering malicious behaviors for Windows PE
malware. Unfortunately, the systems and datasets from these three
prior works are not publicly available. Instead, we create a baseline
using angr[36] and unguided concolic execution, and compared
them to the results of BDHunter-guided concolic execution.
Experiment Setup. First, we use angr, an open-source state-of-
the-art binary analysis platform, as a tool for unguided symbolic
execution with default exploration to observe how existingmethods
can explore a malware’s state space. Second, we run our concolic
engine on these samples without guidance toward behavior dis-
patchers. Instead, we provide a predefined set of suspicious API
calls similar to the API-call guided approach. Then, the invocation
of the set of API calls during concrete execution serve as entry-
points to facilitate symbolic execution to explore malware state
space. Finally, we utilize the identified dispatchers (details in §A.9)
to guide the concolic execution on the same set of malware samples.
In this experiment, we record the executed basic blocks from each
engine and use a unified environment in order to not skew the
outputs of each engine (due to different environments).

For this experiment, we utilize the 202 samples (from Table 2)
of which BDHunter identified C2-related dispatchers, since C2
activities are highly related to trigger-based behaviors. Within the
202 samples, we selected 75 samples from 1 the two largest mal-
ware families (Table 1), which are kolabc and upatre (excluding
virut because most of the virut samples do not have C2 dispatchers
in our dataset) and 2 randomly selected seven families from the
remaining families. Table 3 shows the selected families, their sam-
ples and the results of unguided symbolic and concolic execution,
and BDHunter-guided concolic execution. We evaluate the three
engines on the 75 samples and manually verify that the executed
basic blocks contain the C2 dispatcher and trigger-based behaviors.

5.4.1 Limitations of Unguided Symbolic Execution. Unguided sym-
bolic execution (angr) executes the samples from the original entry
point for at most a 12 hours (a timeout). The reasons we set a
timeout include, but are not limited to, slow emulation [5], path ex-
plosion, high memory overhead, lack of modeled API calls (leading
to incorrect path formula), and the existence of complex unbounded
loops (leading to complex and time-consuming path constraints).
We noticed that angr suffered from the above limitations in many
samples, such as consuming more than 150 GB of memory on many
samples (e.g, rbot family). Upon hitting the timeout and a limita-
tion on memory usage (150 GB), we save all the explored paths and
basic blocks. These limitations make applying unguided symbolic
execution on malware analysis difficult in practice and scalability.

The left column of Table 3 shows that angr can only reach the
behavior dispatcher of the upatre family because the dispatcher are
located in the entry function. For shyape and scar, angr cannot find
complete paths to the dispatcher due to infeasible path constraints,
so the path exploration is completed in less than 20 seconds. Addi-
tionally, tedroo contains various unmodeled API calls and encoding
operations. All of these issues lead to incomplete and incorrect path
formulae, which causes infeasible paths in a symbolic environment.

5.4.2 Limitations of Unguided Concolic Execution. For unguided
concolic execution, similar to API-call guided approaches, we pro-
vide a predefined set of API calls and model the API calls in angr
as many as we can for exploration for, at most, 15 minutes. Upon
hitting the predefined API calls, the engine switches to the sym-
bolic engine to explore in malware. However, we still noticed that
it suffered the following limitations from many malware samples:
1 the concolic engine still suffers from defining the correct set of
API calls and modeling them in the symbolic engine. The engine
requires human effort, which repeatedly includes additional static
reverse engineering, control-flow scrutiny and dynamic traces to
collect the set of essential API calls that associated with trigger-
based behaviors. This effort is a tedious and time-consuming job for
a human analyst. Moreover, any unmodeled API calls in symbolic
engine leads to incorrect path formulae and state explosion. 2 al-
though an analyst can define the set of the predefined API calls and
model them in the engine, the inherited limitations of symbolic ex-
ecution (e.g., state/path explosion and high memory overhead from
§5.4.1) are still issues before the execution reaches to the behavior
dispatcher. This is because there can still be complicated checks
(e.g, complex unbounded loops, encoding, and encryption) along
the paths between the invoked API calls and malicious actions.

The middle column of Table 3 shows that the unguided concolic
execution cannot successfully trigger malicious behaviors for rbot,
tedroo, dexter and kbot (4 out of 9) due to 2 , even if a human effort
is added. For example, dexter contains complicated checks (e.g.,
encoding and encryption) for the C2 commands, which cause state
explosions. For kolabc, shyape and scar (3 out of 9), the unguided
engine requires the human effort (due to 1) to trigger malicious
behaviors. The other 3 families activate all of the triggeredmalicious
behaviors without additional human effort.

5.4.3 BDHunter-guided Concolic Execution. To assess the effec-
tiveness of BDHunter and showcase the benefits of knowing be-
havior dispatcher locations, we leverage the dispatchers (details in

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

767

Family # Samples

Unguided Symbolic Execution Unguided Concolic Execution BDHunter-guided Concolic Execution

Time Malicious Behavior(s) Time Malicious Behavior(s) Time Malicious Behavior(s)

kolabc 49 <5 secs No hidden behavior(s) 15 mins Extfiltration over Web Service (HE*) 15 mins Extfiltration over Web Service
upatre 11 >12 hrs Download and Execute new malware 15 mins Download and Execute new malware 15 mins Download and Execute new malware
shyape 5 <20 secs No hidden behavior(s) 15 mins Download and Execute new malware (HE*) 15 mins Download and Execute new malware
scar 3 <20 secs No hidden behavior(s) 15 mins Download and Execute new malware (HE*) 15 mins Download and Execute new malware
rbot 2 <45 mins No hidden behavior(s) 15 mins No hidden behavior(s) 15 mins Data Collection and Extfiltration over C2 channel
mydoom 2 >12 hrs No hidden behavior(s) 15 mins Drop and Execute new malware 15 mins Drop and Execute new malware
tedroo 1 >12 hrs No hidden behavior(s) 15 mins No hidden behavior(s) 15 mins Download and Execute new malware

Copy and Spread the dropped file(s)
dexter 1 >12 hrs No hidden behavior(s) 15 mins No hidden behavior(s) 15 mins Multi-stage C2 Channels

Download and Execute new malware
Data Destruction and Service Stop

kbot 1 >12 hrs No hidden behavior(s) 15 mins No hidden behavior(s) 15 mins Download and Execute new malware
Service Stop

Table 3: Times and triggered malicious actions by unguided symbolic & concolic execution, and BDHunter-guided concolic execution. The
table shows that BDHunter-guided concolic execution reveals 13.0× and 2.6× more trigger-based malicious behaviors, compared to unguided symbolic and
concolic execution. The malicious behaviors in this table are triggered after hitting the behavior dispatcher from each engine. HE* means that the malicious
behavior(s) requires human effort to be activated in the execution engine. This effort includes additional static reverse engineering, control-flow scrutiny, and
dynamic tracing to collect the set of essential API calls that are related to the malicious behavior(s), but are hidden by complicated checks.

§A.9) for concolic execution (described in §4) and allow the exe-
cution to explore for, at most, 15 minutes. This evaluation demon-
strates that BDHunter-guided concolic execution can overcome
the limitations of unguided symbolic and concolic execution and ac-
tivate the trigger-based behaviors. Unlike unguided concolic execu-
tion, the only human effort required is to analyze the top candidate
dispatchers and feed the basic block address having the dispatchers
to the concolic execution. As we described in §5.1, the dispatchers
are identified within top 20 candidates from 77.4% of our dataset.

The right column of Table 3 shows that BDHunter-guided con-
colic execution unfolds 13.0× and 2.6× more trigger-based ma-
licious behaviors, compared to unguided symbolic and concolic
execution. BDHunter-guided concolic execution successfully acti-
vates the trigger-based behaviors including the families (e.g., rbot,
tedroo, dexter and kbot) that the unguided approaches failed to ac-
tivate to malicious behaviors. BDHunter-guided engine is guided
towards the the identified dispatcher, identify triggering condi-
tions with a trigger value, and fulfill the conditions to activate the
trigger-based malicious actions compared to the baseline. Next, we
provide two case studies from different families to highlight the
effectiveness of BDHunter-guided concolic execution.
Case Study 1: Dexter. This case study covers dexter from §A.9.
This malware sample is a bot that interacts with a C2 server. The
comparison results for this malware are shown in the 8th row in
Table 3. With BDHunter-guided concolic execution, we explore
three C2 command-related behaviors which are unseen during
the two unguided executions. For example, one behavior is Multi-
Stage C2 Channels, which represents multiple stages for C2 that
are employed under different conditions. On the other hand, both
unguided executions fail to reach the behavior dispatchers due to
the path explosion issue. Although the unguided concolic engine
is supported by human effort to set the necessary API calls, it fails
to expose the trigger-based behaviors. Additionally, the sample
contains the complicated checks (e.g., encoding and encryption)
and the loops (inside of the checks) after receiving C2 commands,
which cause state explosion issues.
Case Study 2: kolabc. This case study covers kolabc (details
in §A.9). This malware sample mainly performs Data exfiltration,
which attempts to steal data from the infected endpoint. The com-
parison results on this malware are shown in the first row of Table 3.
It fingerprints the host information (e.g., locale and IP) and waits

for a command from the C2 server. BDHunter-guided concolic ex-
ecution reaches the dispatcher and feeds in the trigger inputs. Then,
it sends the collected files through socket API calls (e.g., connect
and send). On the other hand, the unguided symbolic engine fails
to trigger behaviors because of its incomplete features to simulate
a heap operation for the PE binary. However, for the unguided
concolic engine, after human effort is added to feed the essential
set of API calls, the engine activates the behaviors.

6 Limitations and Discussion

Evading Dispatcher Pattern. Adversaries aware of the existence
of BDHunter can deliberately obfuscate dispatching patterns to
evade it. Although we demonstrated the robustness of BDHunter
in §5.3, an adversary may obfuscate the patterns by control-flow
obfuscation or by forcing each conditional branch operation to
use a different variable or moving the operations into multiple
functions. This would affect the efficiency and the accuracy of
BDHunter. However, this limitation is similar to other pattern-
based approaches that rely on static analysis [4, 15, 24].

To overcome this problem, we could apply code normalization in
IR, including loop unrolling, constant propagation, and dead code
elimination. These transformations can eliminate the additional
variable and conditional branches introduced from the control-
flow obfuscation. Besides, the normalization of dynamic execution
with taint for value flow analysis is also applicable, if an adversary
attempts to use a different variable in each conditional branch oper-
ation or move the operations in multiple functions. By employing
value numbering in the dynamic execution, the value flow analysis
can identify the variables and memory address that carry the same
value. This will also help analyze the function pointers that are
passed through value flows and benefit call site identification.

Like an arms race, malware authors will eventually find ways to
bypass our methods. However, they need to carefully adapt more
targeted obfuscation techniques because they are required to not
only manipulate their dispatcher patterns, but also ensure that the
functionalities of the malware are preserved. This increases the
difficulty of creating new malware to bypass our system.

Additionally, adversaries can conceal triggering conditions and
trigger-based behaviors by encryption-based obfuscation [34]. This
can provide a strong guarantee to hide behaviors by encrypting
trigger-based code with a key and using the combinations of inputs

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

768

as the decryption key to trigger behaviors. However, this is both a
limitation of BDHunter and other approaches that activate trigger-
based behaviors by fulfilling or forcing triggering conditions [30].
However, these malware are rare in practice [25]. Another rare
case that BDHunter cannot handle is malware that uses a cus-
tomize virtual instruction set architecture (ISA) or an interpreted
meta language, which makes it more difficult to accurately identify
dispatcher patterns.
IdentifyingDispatcher Pattern. To accurately identify dispatcher
patterns, BDHunter assumes an accurate disassembly to extract
instructions, basic blocks and functions. However, there are well-
known limitations [1, 2] of accurately disassembling. There could
also be multiple ways of implementing a conditional branch oper-
ation for comparison, which is a key component of behavior dis-
patcher. BDHuntermight miss some instructions that involve com-
parison due to the complexity of x86 instruction set (e.g., CMPXCHG
is branchless instruction but involves comparison).

To overcome this problem, BDHunter relies on BinaryNinja, an
industry-standard disassembler, and its IR (BNIL) which provides a
more abstract semantic representation of x86 assembly [39]. Thus,
BDHunter utilizes these higher-level semantics to identify related
instructions for a conditional branch operation and a common value
at the best-effort. Moreover, additional instructions and patterns
can be added as BDHunter is configurable.
Accuracy of BDHUNTER. The three thresholds (in the pattern-
based method) and the set of suspicious APIs (in the weight-based
method) are used by BDHunter to efficiently detect dispatcher
patterns. Although these configurations performed well in the 302
real-world malware samples, it is possible that other malware sam-
ples could cause more FPs and FNs. Also, an adversary may target
these configurations to subvert BDHunter’s accuracy.

BDHunter can be configured to adjust its accuracy as more
and different malware samples are encountered. Further, additional
patterns and dynamic information (e.g., dynamic tainting a com-
mon value) can be added to enhance the accuracy of BDHunter.
With the additional methods above, BDHunter can achieve higher
accuracy of identification across more malware samples.

7 Related work

Evasion Detection. To evade or mislead analysis, malware often
contain multiple evasive techniques such as virtualization and sand-
box system detection logic [26]. Trigger-based malicious behaviors
tend to be located after evasive techniques. Thus, detecting the
techniques is an important problem to perform malware analysis.
Existing approaches [23, 24] attempt to detect evasive behavior by
applying differential analysis to find dynamic behavior deviation
in different environments and artifact-based signature scanning.
These approaches are effective in detecting known evasive tech-
niques. Unlike these approaches, BDHunter specifically focuses
on identifying behavior dispatchers, which indicate locations that
require trigger values to activate malicious behaviors.
Cryptographic-encoding Detection. Malware often uses cryp-
tographic and encoding functions for various reasons, such as evad-
ing analysis and performing malicious activities like C2 commu-
nication. Detecting such functions is important because malware
analysis based on symbolic execution are limited by these functions.

Previous work [12] detects the cryptographic functions for solving
constraints. However, identifying cryptographic and encoding func-
tions still remains a challenge (e.g, [12] is required to identify the
inverse of encryption functions, which cannot be done for common
encryption algorithms like RSA). Unlike previous work, BDHunter
does not try to detect cyrptographic-encoding functions, but rather
focuses on identifying dispatchers to reach the malicious behaviors
by skipping them as much as possible.
Multi-path Exploration and Forced Execution. Another pop-
ular malware analysis technique is to explore multiple execution
paths via concrete executions [11, 28, 31]. These technique can
effectively achieve high code coverage in analyzing malware. How-
ever, high code coverage does not necessarily achieve reaching
the core logic to trigger its behaviors. Also, it is well-known that
performing high code coverage is computationally expensive [15].
For example, [28, 31] require too many resources and time to cover
many execution paths and are difficult to deploy at scale in prac-
tice. [11] requires manual effort to pinpoint the symbolic source
from predefined API calls. Unlike prior works, BDHunter adopts
a target-specific approach by identifying dispatchers and using
them to trigger malicious behaviors in practice. The findings of
BDHunter are designed to give insights about malware to focus
and guide its execution to reveal more behaviors. BDHunter feeds
the identified dispatchers to the executing engine to guide its path
exploration, so that the engine will not blindly explore the mali-
cious sample, and we will not assume that the execution will luckily
hit the core logic of the malware.
Pattern-based Behavior Detection. Pattern-based detection ap-
proaches [4, 15, 35] have been widely applied to malware analy-
sis and vulnerability assessment. [15] constructs behavior models
based on observed malicious behaviors while dynamically execut-
ing, and uses those models to statically identify the capabilities of
malware via code structure comparison. However, this approach
relies on the coverage of the model set, which can be limited for
unknown malware capabilities. [35] performs vulnerability assess-
ment for firmware in embedded devices. It uses symbolic execution
on statically sliced program binaries to produce constraints and per-
forms constrains solving via manually provided privileged program
points. While this approach improved the automation of vulnerabil-
ity detection for firmware, it still cannot handle complex checks and
requires manual annotations. By comparison, our pattern-based
method does not rely on prior knowledge about the malware, and
focuses on dispatcher patterns for trigger-based malware.

8 Conclusion

In this paper, we propose BDHunter, a system that automatically
identifies behavior dispatchers, a common component that dis-
tributes a malware’s execution to different actions in trigger-based
samples. In our evaluation, we demonstrate that BDHunter is effec-
tive and accurate in identifying behavior dispatchers. Furthermore,
the identified behavior dispatchers are useful for assisting concolic
execution engines in revealing trigger-based malicious actions.

9 Acknowledgment

We thank our shepherd, Kehuan Zhang, and the anonymous re-
viewers for their helpful and informative feedback. This material

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

769

was supported in part by the Office of Naval Research (ONR) under
grants N00014-17-1-2895, N00014-15-1-2162, and N00014-18-1-2662,
and the Defense Advanced Research Projects Agency (DARPA) un-
der contract HR00112090031. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of ONR or DARPA.

References

[1] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. 2016. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
25th USENIX Security Symposium USENIX Security 16. 583–600.

[2] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
function detection in binaries. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 177–189.

[3] AV-TEST - The Independent IT-Security Institute. 2020. Statistic Malware samples
in 2020. https://www.av-test.org/en/statistics/malware/.

[4] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. 2011.
Statically-directed Dynamic Automated Test Generation. In Proceedings of the
2011 International Symposium on Software Testing and Analysis. ACM, 12–22.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. Journal ACM
Computing Surveys (CSUR) Surveys Homepage archive 51, 50 (2018).

[6] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code obfuscation against symbolic execution attacks. In
Proceedings of the 32nd Annual Conference on Computer Security Applications.
189–200.

[7] Sebastian Banescu, Martín Ochoa, and Alexander Pretschner. 2015. A framework
for measuring software obfuscation resilience against automated attacks. In 2015
IEEE/ACM 1st International Workshop on Software Protection. IEEE, 45–51.

[8] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344.

[9] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. 2012.
Scientific but Not Academical Overview of Malware Anti-Debugging, Anti-
Disassembly and Anti-VM Technologies. In Black Hat USA Briefings (Black Hat
USA). Las Vegas, NV.

[10] Derek L. Bruening. 2004. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. Ph.D. Dissertation. Cambridge, MA, USA. AAI0807735.

[11] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and
Heng Yin. 2008. Automatically Identifying Trigger-based Behavior in Malware.
In Botnet Detection. Springer, 65–88.

[12] Juan Caballero, Pongsin Poosankam, Stephen McCamant, Domagoj Babi ć, and
Dawn Song. 2010. Input generation via decomposition and re-stitching: Finding
bugs in malware. In Proceedings of the 17th ACM conference on Computer and
communications security. 413–425.

[13] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen, Xiaosong Zhang,
and Jean-Yves Marion. 2018. Towards paving the way for large-scale windows
malware analysis: Generic binary unpacking with orders-of-magnitude perfor-
mance boost. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 395–411.

[14] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. Acm Sigplan Notices
46, 3, 265–278.

[15] Paolo Milani Comparetti, Guido Salvaneschi, Eggngin Kirda, Clemens Kolbitsch,
Christopher Kruegel, and Stefano Zanero. 2010. Identifying Dormant Functional-
ity in Malware Programs. In 2010 IEEE Symposium on Security and Privacy.

[16] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: mal-
ware analysis via hardware virtualization extensions. In Proceedings of the 15th
ACM conference on Computer and communications security. 51–62.

[17] FalconSandbox. 2020. Hybrid-Analysis. https://www.hybrid-analysis.com/.
[18] Nicolas Falliere and Eric Chien. 2019. Zeus: King of the Bots. https:

//www.symantec.com/content/dam/symantec/docs/security-center/white-
papers/security-response-zeus-king-of-bots-09-en.pdf.

[19] Hex-Rays. 2020. IDA F.L.I.R.T. https://www.hex-rays.com/products/ida/tech/
flirt/in_depth.shtml.

[20] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, Kyu Hyung Lee, and
Taesoo Kim. 2019. Fuzzification: Anti-fuzzing techniques. In 28th USENIX Security
Symposium USENIX Security 19. 1913–1930.

[21] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. 2015. Obfuscator-
LLVM–software protection for the masses. In 2015 IEEE/ACM 1st International
Workshop on Software Protection. IEEE, 3–9.

[22] Jacob Kastrenakes. 2019. Agent SmithMalware Has Replaced Android Apps’ Code
on 25 Million Devices. https://www.theverge.com/2019/7/10/20688885/agent-
smith-android-malware-25-million-infections.

[23] Dhilung Kirat and Giovanni Vigna. 2015. Malgene: Automatic extraction of
malware analysis evasion signature. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 769–780.

[24] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. 2011. The power of
procrastination: detection and mitigation of execution-stalling malicious code. In
Proceedings of the 18th ACM conference on Computer and communications security.
285–296.

[25] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. 2017.
Paybreak: Defense against cryptographic ransomware. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. 599–611.

[26] LordNoteworty. 2020. Al-Khaser. https://github.com/LordNoteworthy/al-khaser.
[27] Masrepus vfsrfs garanews. 2020. Unpacking PE files using Unicorn Engine.

https://github.com/unipacker/unipacker.
[28] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring multiple

execution paths for malware analysis. In 2007 IEEE Symposium on Security and
Privacy. IEEE, 231–245.

[29] Yuval Nativ. 2021. theZoo. https://thezoo.morirt.com/.
[30] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion.

2019. How to kill symbolic deobfuscation for free (or: unleashing the potential of
path-oriented protections). In Proceedings of the 35th Annual Computer Security
Applications Conference. 177–189.

[31] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-force: Force-executing binary programs for security applications. In
23rd USENIX Security Symposium USENIX Security 14. 829–844.

[32] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317–331.

[33] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-
class: A tool for massive malware labeling. In International symposium on research
in attacks, intrusions, and defenses. Springer, 230–253.

[34] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, andWenke Lee. 2008. Impeding
Malware Analysis Using Conditional Code Obfuscation.. In NDSS. Citeseer.

[35] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware.

[36] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.

[37] The Linux Foundation. 2020. gRPC. https://grpc.io/about/.
[38] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015.

SoK: Deep packer inspection: A longitudinal study of the complexity of run-time
packers. In 2015 IEEE Symposium on Security and Privacy. IEEE, 659–673.

[39] Vector35. 2020. BinaryNinja Intermediate Language. https://docs.binary.ninja/
dev/bnil-llil.html.

[40] VirusTotal. 2021. VirusTotal. https://virustotal.com/.
[41] Wine. 2020. Wine API to Forward Windows API. https://source.winehq.org/

WineAPI/.
[42] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic function

detection in obfuscated binaries via bit-precise symbolic loop mapping. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 921–937.

[43] Fratantonio Yanick, Bianchi Antonio, Robertson William, Kirda Engin, Kruegel
Christopher, and Vigna Giovanni. 2016. TriggerScope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE, 377–396.

[44] Michal Zalewski. 2019. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/
afl.

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

770

https://www.av-test.org/en/statistics/malware/
https://www.hybrid-analysis.com/
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-zeus-king-of-bots-09-en.pdf
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.theverge.com/2019/7/10/20688885/agent-smith-android-malware-25-million-infections
https://www.theverge.com/2019/7/10/20688885/agent-smith-android-malware-25-million-infections
https://github.com/LordNoteworthy/al-khaser
https://github.com/unipacker/unipacker
https://thezoo.morirt.com/
https://grpc.io/about/
https://docs.binary.ninja/dev/bnil-llil.html
https://docs.binary.ninja/dev/bnil-llil.html
https://virustotal.com/
https://source.winehq.org/WineAPI/
https://source.winehq.org/WineAPI/
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

Appendix A

A.1 Categories of behavior dispatchers.

Behavior dispatcher Features

C2 command Trigger an activity that leads to reconnaissance, initial
compromise, control, exfiltration, and et al

File Systems Create/read/modify/delete file, File size, Paths
Process Create/read a process, Loading Library, Process memory
Network Requests and responses, DNS, Connections
Registry Create/read/delete keys
Time System Time check, Time sleep
Environment OS version, AV software, VM awareness

Table 4: Although BDHunter identifies general dispatching behaviors, the
above is a table of different categories that make up the behaviors it found.

A.2 Behavior dispatcher with Zeus’s code.

1 struct {short Id; CMDProc proc;}
2 cmds[MAX] ={{CMD_DESTROY, destroy},
3 {CMD_EXECUTE, execute},...};
4 if (GetCommand(cmd) != 0) return -1;
5 for (int ci = 0; ci < MAX; ci++) {
6 char *name = map(cmds[ci].Id);
7 if(_lstrcmpiW(name, cmd) == 0)
8 cmds[ci].proc(cmd);
9 }

(a) Source code

T

7
F

destroy

GetCommand(cmd)

execute ...

5-6

(b) Control-flow graph

Figure 4:Malware Zeus uses a loop for command comparison and dispatch.

A.3 Malware samples and their families used

in training.

Label (#3) zbot, (#3) dexter, (#2) blakken, (#2) dinwod, (#2) emotet, (#2)
gamarue, (#2) mydoom, (#2) rbot, (#2) regin, (#2) sinowal, (#2) vobfus,
(#1) alinaos, (#1) blackenergy, (#1) carbank, (#1) carberp, (#1) cometer,
(#1) duqu, (#1) fakealert, (#1) fonten, (#1) fuerboos, (#1) gravityrat, (#1)
hupigon, (#1) installerex, (#1) khalesi, (#1) kovter, (#1) njrat, (#1) poscard-
stealer, (#1) sekur, (#1) sofacy, (#1) stuxnet, (#1) tedroo, (#1) zemra, (#1)
zeroaccess, (#1) zonidel, (#1) zusy (#2) singleton,

Total 38

A.4 Malware samples and their families used

in evaluation.

Label (#49) kolabc, (#34) virut, (#11) upatre, (#7) zbot, (#6) chir, (#6) crytex,
(#6) scar, (#6) zegost, (#5) Hematite, (#5) sality, (#5) shyape, (#4) blad-
abindi, (#4) gamarue, (#4) Rodecap, (#4) tinba, (#3) expiro, (#3) Qakbot,
(#3) ursnif, (#3) ursu, (#3) wabot, (#3) wapomi, (#3) zusy, (#2) agen, (#2)
autoit, (#2) badur, (#2) blackhole, (#2) cosmu, (#2) delf, (#2) hworld, (#2)
ibryte, (#2) ircbot, (#2) nitol, (#2) pioneer, (#2) qbot, (#2) qqpass, (#2)
Ramnit, (#2) rbot, (#2) regrun, (#2) tempedreve, (#2) trickbot, (#2) unruy,
(#2) vanbot, (#2) vobfus, (#2) wlksm, (#1) acidhead, (#1) acidsena, (#1)
adonai, (#1) agobot, (#1) aladin, (#1) aleph, (#1) alicia, (#1) almaster, (#1)
alphabot, (#1) amanda, (#1) amitis, (#1) angelfire, (#1) anibot, (#1) antes,
(#1) antilam, (#1) apbost, (#1) aslyum, (#1) assasin, (#1) backend, (#1)
blackengery, (#1) brabot, (#1) Brambul, (#1) breplibot, (#1) chinabomb,
(#1) cmjspy, (#1) dancerbot, (#1) danton, (#1) darkbot, (#1) daws, (#1)
dealply, (#1) delphi, (#1) destructbot, (#1) dexter, (#1) diewar, (#1) down-
loadersponsor, (#1) duke, (#1) eggdrop, (#1) emotet, (#1) feardoor, (#1)
funlove, (#1) gandcrypt, (#1) gator, (#1) harebot, (#1) horst, (#1) hosts,
(#1) icedid, (#1) icmp, (#1) installmonster, (#1) jaiko, (#1) joiner, (#1) joke,
(#1) kbot, (#1) lamebot, (#1) latinus, (#1) leetbot, (#1) nanocore, (#1) of-
fend, (#1) parite, (#1) pykspa, (#1) redfox, (#1) sadenav, (#1) seimon, (#1)
simbot, (#1) socelars, (#1) speedingupmypc, (#1) startsurf, (#1) tiggre,
(#1) ultimaterat, (#1) virlock, (#1) vnuke, (#1) vtflooder , (#1) zapchast,
(#9) Singleton

Total 127

A.5 Selected suspicious API calls for the

weight-based identification.

Resource API calls

File CreateFile, WriteFile, ReadFile, DeleteFile

Process LoadLibraryW, GetProcAddress, ShellExecuteW, ShellExecuteA, Exit-
Process, GetProcessHeap, OpenProcess, CreateWindowExA, CreatePro-
cessA, Process32First

Network InternetReadFile, InternetOpen, InternetConnect, InternetSetOption,
InternetGetConnectedState, InternetQueryOption, InternetOpenUrl,
InternetConnect, InternetQueryOption, InternetCreateUrl, Inter-
netWriteFile, InternetReadFileEx, InternetSetCookie, InternetSetOp-
tionEx, InternetCombineUrl, HttpSendRequest, HttpQueryInfoW,
HttpOpenRequestW, WinHttpSendRequest, Ordinal_WSOCK32_5,
Ordinal_WSOCK32_107, Ordinal_WSOCK32_20, InternetCanonical-
izeUrl, MSWSOCK, wsock32, WinHttpGetDefaultProxyConfiguration,
closesocket, ioctlsocket, gethostname, getsockname, SendInput, htons,
WSARecv, WSASend, WSASocketA, WSASocketW, WSARecvFrom,
recvfrom, recv, sendto, send, WININET, WINHTTP, DnsFree,
DnsQuery_A, DnsQuery_UTF8,

Registry RegEnumKeyEx, RegSaveKey, RegRestoreKey, RegLoadKey, RegSet-
Value

Other lstrcmpiW, lstrlenW, lstrcmpW, lstrcpyA, strncpy, strncmp, strcmp,
strstr, strnicmp, wcscmp, LoadStringW, LCMapStringW, LCMapStringA,
CompareStringW, CompareStringA, GetEnvironmentStringsW, SetEnvi-
ronmentVariableW, FreeEnvironmentStringsW, timeSetEvent, GetCPIn-
foExW, CryptAcquireContextA

A.6 Algorithm of weight-based dispatcher

identification.

Algorithm 2: Weight-based Dispatcher Identifier
Input :CFGs :- control-flow graphs of the whole program

Map :- a map from suspicious APIs to their weights
Output :S :- the set of candidate behavior dispatcher

1 Procedure WeightBasedIdentifier(CFGs, Map)
2 while update do // propagate weights to callers
3 update = 0;
4 foreach CFG ∈ CFGs do // check each function
5 hasUnknonwn = 0; weight = 0;
6 foreach callInst ∈ CFG do // check each callee
7 target = callInst.getCallTarget();
8 if target < Map then

9 hasUnknown = 1; break;
10 weight += Map[target];
11 if hasUnknown then continue;
12 Map[CFG] = weight;
13 update = 1;
14 foreach CFG ∈ CFGs do // diff callers and callees
15 foreach F ∈ CFG.getCallees() do
16 CFG.diff_callees += Map[CFG] / Map[F];
17 CFG.diff_callees /= CFG.getCallees().length();
18 foreach F ∈ CFG.getCallers() do
19 CFG.diff_callers += Map[F] / Map[CFG];
20 CFG.diff_callers /= CFG.getCallers().length();
21 CFG.weight_diff = CFG.diff_callees / CFG.diff_callers;
22 if CFG.weight_diff > W then S.add(CFG);
23 return S.sort();

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

771

A.7 Distribution of identified dispatchers and

functions that contain dispatchers.

20 40 60 80 100
0

20
40
60
80

100

%
 o

f d
is

pa
tc

he
rs

Locations of real behavior
 dispatchers in top100 candidates

(a) CDF of behavior dispatchers

20 40 60 80 100
0

20
40
60
80

100

%
 o

f s
am

pl
es

% of Functions to
 Analyze in Malware Samples

(b) CDF of functions

Figure 5: (a) shows we identify a large majority of dispatchers within the
top 20 dispatchers. (b) shows we identify a majority of samples’ dispatching
functions within the top 10% of all functions.

A.8 Comparison between pattern-based and

weight-based methods in C2-dispatchers.

20 40 60 80 100
0

20
40
60
80

100

%
 o

f m
al

w
ar

e
sa

m
pl

es

C2 related

Locations of real behavior
 dispatchers in top 100 candidates

(a) CDF of samples

0 25 50 75 100
0

25

50

75

100

Lo
ca

tio
ns

C2 related candidates

Weight-based
Pattern-based

(b) Comparison

Figure 6: (a) shows the CDF of samples with C2-based dispatchers among
the top 100 candidates, reported by the weight-based method. (b) shows the
comparison pattern-based and weight-based methods on detecting C2-based
dispatchers in 102 samples.

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

772

A.9 Selected samples per family and their behavior dispatchers that used in evaluation.

SHA256 Family
Simplified Behavior dispachers Year

(first submission

in Virustotal)
Type Function Basic block chains

[Start, End]

001017c87a1a4c9aca8b55fe265babb5c3a97463bab33588a0a83925d8fc7d95 upatre C2-related 0x401000 [0x401024, 0x4011cc] 2018
02186ad0ea9680bef3e6ea28d08c085332cba41c8f7392af7134cd553ca3d289 ibryte C2-related 0x402032 [0x402252, 0x408734] 2018
044bb96c58ca05fa63a5292a909604604f499f6f0d334444e63d62b04e3a97dd kolabc C2-related 0x405338 [0x4053b6, 0x40570f] 2018
052ffac86ad7db839562e1c6b578bd732e363986e91ec67e67d2eb41213feb3c gator C2-related 0x409a20 [0x409b4d, 0x409c99] 2018
054027e32a23362e2b26d6d3081e4a4c3b400bca6ada3ea76e940099c6b14409 expiro C2-related 0x10022bc [0x1002310, 0x100255d] 2018
10cea7d2289c53e4d432762611906783afa9735e493471d4f9f3eb5a63ba0d0a wapomi C2-related 0x4095f4 [0x409638, 0x409e82] 2018
115c24b2e7ac5ebefcdf064c7813d988315cc4c489963962d3880474e9bcdbaf autoit C2-related 0x40a000 [0x40ac03, 0x40b6d1] 2018
121072e3e6bb51ce21911e17a2dc7555e5d71ff1de15262cfcf99bc1aac64c99 virut C2-related 0x10050ce [0x1005124, 0x100598e] 2018
14e02de1cd46b1b0198f73f07262a3847d0ce1e7871461202252b95b73bc5aba sality C2-related 0x30008714 [0x30008714, 0x30008957] 2018
1c4bb5d1896d1cbf495f15dfe14dee80decde7e01027ddd168801deffebdf3c0 chir C2-related 0x1001f41 [0x1001f67, 0x10021eb] 2018
1cc1bd952ad29e44a1a249d9d9f9492048acfdc77fc220fb8296f28b47749a19 host C2-related 0x40e800 [0x40e810, 0x40f1a6] 2018
1e2a3f5a1f727b2b6072adefb992c3da51dcf2cf85d1491713640a8d95ddb063 downloadersponsor C2-related 0x46638d [0x46640b, 0x466806] 2018
22cb952cce7ffdc74b99c1c961c725a31c9c8b1032136cf279448078f2762ccc cosmu C2-related 0x40eaa4 [0x40eb31, 0x40edfc] 2013
2356d6bac437beef7b854336594e0d262a7a91c02941b6be27d993fd6991b188 wabot C2-related 0x405cdc [0x405ce5, 0x406180] 2018
2df5bbe0e055e2af7d32e3b71ea80b70f844a917229a6b7f9668eca31c3d813e zbot C2-related 0x410650 [0x410761, 0x4107d5] 2012
2dfa173806d9a0da60bb4a2b0fa4ff0979543d80a188e7c81d4590ee26ac2a39 lamebot C2-related 0x402661 [0x402707, 0x4028fc] 2015
2fc9b799fe335e563b9d838d163c6c7d045823c4366b0ff411969a5b265aa06d hworld C2-related 0x1004ae8 [0x1004b35, 0x1004bef] 2018
318f149602a8a8f9049d851f5d12f41e3b84c6ae48159cfd2a27b62f843e1398 speedingupmypc C2-related 0x40e77c [0x40e7a4, 0x40e865] 2018
3fa55852b0974ab0c4ef3db11963da466835787009d769c089e299cf9dcb322d unruy C2-related 0x40f45e [0x40f4a7, 0x40fa39] 2018
40d3fe54bde382254fc2f562af2fc597279e4ebe9d717f0f828b9a414612d730 bladabindi C2-related 0x404c50 [0x404e75, 0x404f5a] 2018
43933b0112dcf49c748246b2b4abe066ff067d962d590c4c5b82b03af4b0425e shyape C2-related 0x402900 [0x402923, 0x402a31] 2018
457b4058dab6f5a55666d52f3359e609c96a2c7a0f9f20e8b2163b8cbb51b990 mydoom C2-related 0x804d32 [0x804d6a, 0x804efa] 2019
46eeb9690c04a406c0bbb1aa3dbd9e04a5a61bedce2ecc456ab3be3ed3182f2b Hematite C2-related 0x1004ae8 [0x1004b35, 0x1004bef] 2018
49cce631a6c2135f7a4ceefac9260bdd65ae903cdde25d2747fe52bb5b4b53e3 nitol C2-related 0x401be0 [0x401cb2, 0x402160] 2018
4a8a92d9bd345ddee3134702db9e0fe573847c20ea0ba335c406b5cba46335df badur C2-related 0x4010a0 [0x4010a0, 0x401203] 2018
4c328f22bbbe056c489b5dee595d657180870bddbffef852d2bb672926f5cac4 offend C2-related 0x40e010 [0x40e080, 0x40e510] 2018
4eabb1adc035f035e010c0d0d259c683e18193f509946652ed8aa7c5d92b6a92 dexter C2-related 0x405ca0 [0x405cc1, 0x405e9c] 2013
4f0e0f8f17a74f12457e9353ee87324feb503b1bc3e7a025b8d2bca918aff939 Qakbot C2-related 0x4019f7 [0x40b711, 0x40c293] 2018
5ee455952368a1a80cb1724387636f74af92ab92e1334f997aabd7e7846006de adonai C2-related 0x48c1dc [0x48c20a, 0x48deec] 2013
5fed3475b4498a1d130996cbe268273a15b46a1a3060c56cb8ecda4b3e80f97a Ramnit C2-related 0x413d20 [0x4146a4, 0x414b06] 2018
608cb84a2277d4b7222af0293a1b682142c913d63097331ecae73e2fce7ea155 Rodecap C2-related 0x4130c0 [0x41330d, 0x41374b] 2018
6a340dbff8c4d6f557ea5882227379ac2ea7a080d1da4204ef3a3b24fa6af877 ursu C2-related 0x4019f7 [0x401cc2, 0x401d70] 2018
6a677e19dd0adb0902be09094cb2e64a1e1e422b25b8d2d24adac95640dede1a startsurf C2-related 0x4914c0 [0x4914f3, 0x491cb7] 2018
6bb31105cd051824bdab997ba4af0aeac9aff8deebdd637e480f3b39e3905802 tinba C2-related 0x403520 [0x4037ce, 0x40447a] 2018
6be9c723d766a4478a74f7d3ba722dfd37ac120e1267d3da3fa88ff841a936e0 crytex C2-related 0x100133f [0x1001362, 0x10013db] 2018
6e50e0137ef2e57fa16d2750a1eff8f0b8552a29f48bad8e41196e39c71f458c zusy C2-related 0x40ddfd [0x40e407, 0x40e9aa] 2018
72e5f89846cb2573b07a32e1c106dfbdbd56cd1a593836577f062401bcfac9fc scar C2-related 0x402900 [0x402940, 0x402a6f] 2018
8bb8feb3d5fb92c7584f1ccb94459307376dae239ce0beb459427efae0db905e tedroo C2-related 0x405b30 [0x405c26, 0x406319] 2019
8c0736746c5c70cafd2510318ec8d1a34192ef877128dbd9d4ba6db0e3c80d46 ircbot C2-related 0x407a90 [0x407d61, 0x402377] 2018
8c86f78dc42fe98cf2aa0e412515e35ed4178f2d8fc066d2e7344dd91406675f gandcrypt C2-related 0x4011f8 [0x401231, 0x4014cb] 2018
9603098860e28858233ad7badfb3c76773f68a734bd12ceee11b7bb9e2f3b7be vtflooder C2-related 0x4010a0 [0x4010dc, 0x401203] 2018
a0a0c779dadcdd3328585316aff9b838f64b7afa070f4a63fe85bca747cb1d88 nanocore C2-related 0x41a7bb [0x41a854, 0x41b384] 2018
aebeb5363ad2aea39960fa2422241204a557259fcad8df60ee46eb902f53061e alicia C2-related 0x4743a8 [0x474401, 0x4746a6] 2013
b11c5fa939db2157c36c0a3a92966388dc81573a236da224753b8613959c7dcc pykspa C2-related 0x40fa36 [0x40fa63, 0x40fd1a] 2018
b5610d256505e8f590318cc891ca6277452f421b9d4b5a4551508ebddeef3d95 agen C2-related 0x40164f [0x402965, 0x4037e6] 2018
be40534b3738098b0ad386389c93ac9d3a7f89c592faa194a6a802d7f1b28880 zegost C2-related 0x41eff0 [0x41f0cb, 0x41f248] 2018
c0c6be94ec07488ef2bd69894ba6c4955fbf5979599c47a1a68a76d719e3eac0 rbot C2-related 0x40c580 [0x40c6e5, 0x40ca7b] 2018
c168184d91abc235db97c95163fabd64b8273069e99571fbc3fc0a6f2726f7df kbot C2-related 0x15112a00 [0x15112a00, 0x15112d09] 2019
c2470aa1143e956fe2d358a76f1c1bd2159bf9c98741a8b2b2e94516cdd852bb agobot C2-related 0x40138e [0x401437, 0x4028f2] 2012
f689947fb17d061d8e49751efc84129a7ca0906a2adbd68e3909448f58201d7e pioneer C2-related 0x40138e [0x45a4ae, 0x45a6e2] 2018

Session 8A: Malware and Cybercrime (I) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

773

	Abstract
	1 Introduction
	2 Problem and Approach
	2.1 Motivating Example
	2.2 Limitations of Existing Methods
	2.3 Hunting Behavior Dispatchers

	3 BDHunter
	3.1 Malware Information Collection
	3.2 Pattern-based Identification
	3.3 Weight-based Identification
	3.4 Implementation

	4 Revealing Malicious Behaviors
	5 Evaluation
	5.1 Accuracy of Dispatcher Identification
	5.2 Analysis Efficiency
	5.3 Robustness of BDHunter
	5.4 Triggering Malicious Behaviors

	6 Limitations and Discussion
	7 Related work
	8 Conclusion
	9 Acknowledgment
	References
	A
	A.1 Categories of behavior dispatchers.
	A.2 Behavior dispatcher with Zeus's code.
	A.3 Malware samples and their families used in training.
	A.4 Malware samples and their families used in evaluation.
	A.5 Selected suspicious API calls for the weight-based identification.
	A.6 Algorithm of weight-based dispatcher identification.
	A.7 Distribution of identified dispatchers and functions that contain dispatchers.
	A.8 Comparison between pattern-based and weight-based methods in C2-dispatchers.
	A.9 Selected samples per family and their behavior dispatchers that used in evaluation.

