
q Executed instructions log

q Module loading/unloading log

Ø Tracking memory page

permission

q Dynamic taint tracking

Ø Fine-grained taint source

tracking

Ø 1-level table lookup

• Raw instruction

• Instruction operands

• Memory states

Types of DUI

Execution State Collection

Problem Introduction

Conclusion

Dereference Under the Influence (DUI)
You Can’t Afford It

q Security-critical components are often

protected using isolation mechanisms

Ø Interactions via API interfaces

q Attackers can affect the protected

component by input to interfaces

Ø Data values

Ø Memory addresses

q We call memory dereference affected

by attackers Dereference Under the
Influence (DUI).

q Attackers can influence memory operations

of isolated components through inputs to

their public interfaces.

q We present DUI Detector, an automatic tool

to detect dereference under the influence

(DUI) through memory access patterns in

execution traces.

Hong Hu, Zheng Leong Chua, Prateek Saxena, Zhenkai Liang

q Write DUI: memory writing operation

q Read DUI: memory read operation

* API_recv() receives data from outside

* API_send() sends data to outside

v1 = API_recv();
v2 = API_recv();
array[v1] = v2;

v1 = API_recv();
data = *(base+v1);
API_send(data);

memory
corruption

information
leakage

Program

Component

Component Component

interface

Instruction Shortlisting Access Behavior Analysis

DUI in glibc

This work is supported by the Ministry of Education, Singapore under Grant No. R-252-000-495-133.

input

binary vulnerability

severity

q Write DUI detection

Ø Memory writing instruction

Ø Tainted source operand register

Ø Tainted writing address

q Read DUI detection

Ø Memory read instruction

Ø Tainted read address

Ø Result is used at sinks

q Trace formula generation

Ø Data-flow constraints

Ø Control-flow constraints

Ø Memory permission

Ø Data life-cycle

q Attacker’s capability

estimation

Ø Build queries on memory

• Bit-pattern

• Range

Ø Solve the query using solver

q DUI filtering

mov %eax, (%esi)

mov (%esi), %eax
……
sink(%eax)

Evil
kernel

Protected
program glibc

brk system call

Setup the heap region:
addr1 = brk(arg1)
addr2 = brk(arg2)
*(addr1 + 4) = addr2 – addr1

Corresponding inst.:
mov %eax, 0x4(%edx)
…
mov %eax, 0x4(%edi)

Detected DUIs

condition (brk1 %8 == 0 && brk2 > brk1)

address = brk1 + 0x2718 ;
data = (brk2 - brk1 - 0 x2718) | 0x1;

condition (brk1 %8 != 0 && brk1 < brk2

&& brk2< brk3)

address : dependent on brk1 ;

data : dependent on brk1 and brk2 ;

condition (brk1 %8 != 0 && brk1 < brk2

&& brk2 > brk3)

address : dependent on brk1 ;

data : dependent on brk1 and brk3 ;

Iago

Some pictures courtesy of http://icons8.com/

System Call

DUI Detector: An automatic tool to detect DUI

mmap2 system call

Map files or devices into memory

Related inst. :
mov %eax, 0x1ac(%edi)

