
Detecting Logical Bugs of DBMS with Coverage-based Guidance

Yu Liang† Song Liu†∗ Hong Hu†

†Pennsylvania State University ∗Qi-AnXin Tech. Research Institute

Abstract
Database management systems (DBMSs) are critical compo-
nents of modern data-intensive applications. Developers have
adopted many testing techniques to detect DBMS bugs such
as crashes and assertion failures. However, most previous ef-
forts cannot detect logical bugs that make the DBMS return
incorrect results. Recent work proposed several oracles to
identify incorrect results, but they rely on rule-based expres-
sion generation to synthesize queries without any guidance.

In this paper, we propose to combine coverage-based guid-
ance, validity-oriented mutations and oracles to detect logical
bugs in DBMS systems. Specifically, we first design a set of
general APIs to decouple the logic of fuzzers and oracles, so
that developers can easily port fuzzing tools to test DBMSs
and write new oracles for existing fuzzers. Then, we provide
validity-oriented mutations to generate high-quality query
statements in order to find more logical bugs. Our prototype,
SQLRight, outperforms existing tools that only rely on oracles
or code coverage. In total, SQLRight detects 18 logical bugs
from two well-tested DBMSs, SQLite and MySQL. All bugs
have been confirmed and 14 of them have been fixed.

1 Introduction

Database management systems (DBMSs) are used extensively
in data-intensive programs, helping billions of devices host
trillions of databases [23,51,54–57]. Any bug in DBMSs will
affect a large number of users. Although many efforts have
been spent on testing DBMS systems [10, 58, 70, 71], most of
them focus on finding crashes and assertion failures that fi-
nally make the execution terminate accidentally. They cannot
detect logical bugs that make the DBMS return unexpected
results, like leaking extra rows. Since logical bugs usually do
not crash the program, we need an oracle to determine whether
each execution produces the correct result or not. However,
building an oracle is time-consuming and error-prone due to
the various language dialects and features [49].

Recent progress on DBMS oracles shed light on logical
bug detection [43–45]. For example, Rigger et al. constructed

several general oracles by transforming SQL queries into se-
mantically equivalent forms. One DBMS may process these
queries with different code paths, but the final results should
be the same. Any inconsistency indicates a potential logi-
cal bug. SQLancer, the tool that implements these oracles,
has successfully found many logical bugs [30, 42]. However,
SQLancer relies on a rule-based generator to synthesize origi-
nal queries, which may limit its capability to explore program
states. Specifically, it creates expressions for WHERE and JOIN
clauses based on the grammar of the specific DBMS and the
schema of the underlying database. Considering the huge
query space, it could invest a great deal of time and effort on
similar queries, which cannot inspect diverse program code.

Coverage-guided program testing, or fuzzing, has been
adopted to test a wide range of programs and successfully
found thousands of memory-related bugs [18, 27, 32, 48, 70].
The core idea of fuzzing is to utilize the code coverage to
guide the input generation. A fuzzing tool, or fuzzer, picks up
an input from a queue and randomly updates it to produce new
test cases. Then, it runs the program with the new test case
and at the same time collects the code (like basic blocks or
branches) being executed. If the execution triggers new code,
the fuzzer will add the new test case to the queue and use it for
future mutation; otherwise, the fuzzer will drop the new test
case and move on to mutate another input in the queue. Previ-
ous works applied coverage-guided fuzzing to test DBMSs
and demonstrated the benefits of detecting memory-related
bugs [10, 60, 71]. However, no research ever tried to apply
coverage-based guidance on logical bug detection.

In this paper, we aim to understand the benefits of coverage-
based guidance on logical bug detection, specifically for
DBMS systems. Our study reveals several challenges of adopt-
ing current mutation-based fuzzers to find logical bugs. The
main problem comes from generating valid SQL queries.
Since we need to compare the results of DBMS executions,
the generated query should pass both syntax and semantic
checks and successfully produce meaningful outputs. Existing
fuzzers can synthesize decent queries that trigger assertion
failures and crashes, but many of them are not completely

1

valid and thus cannot be used for finding logical bugs.
To address this problem, we propose validity-oriented mu-

tation, which defines a set of policies to improve the validity
of generated queries. First, we design an automatic method
to convert the SQL parser of each DBMS for fuzzing pur-
poses. Currently, most fuzzers use one parser to handle dif-
ferent DBMS systems [10, 71]. Since many DBMSs use their
own SQL dialects to support unique features [49], the uni-
fied parser may produce a lot of incompatible queries. Even
worse, the incorrect queries could trigger error-handling code
and are prioritized by coverage-based guidance. Therefore,
we provide one query parser for each DBMS to reduce the
invalid queries. Our second effort is to build a context-based
instantiation algorithm that enforces accurate dependencies
between SQL elements. For example, DROP TABLE X removes
table X from the current database. Our method will follow the
semantics and remove the corresponding table from the con-
text so that it will not be used for the following statements. We
also consider the oracle requirement to produce more useful
queries. Specifically, we allow the oracle to label necessary
elements as immutable. Our cooperative mutation engine will
avoid changing these elements while randomly updating oth-
ers. At last, we eliminate non-deterministic behaviors from
the queries to avoid unnecessary false alarms. With these
solutions, we effectively improve the query validity rate.

Another problem that hinders fuzzing to detect logical bugs
is the lack of unified interfaces between fuzzers and DBMS
oracles. Most fuzzers simply rely on the operating system or
various sanitizers to detect bugs [28, 46, 47], while detecting
logical bugs requires generating proper SQL statements and
checking the execution results. To fill this gap, we design a set
of expressive APIs to simplify the implementation of DBMS
oracles. Our APIs decouple the fuzzing logic and the oracle
logic. Developers can focus on one area, either fuzzing or
oracle, to easily apply existing methods to detect logical bugs.

We implement a system, SQLRight, that combines the
coverage-based guidance, validity-oriented mutations and or-
acles to detect logical bugs for DBMS systems. SQLRight
first mutates existing queries cooperatively. It inserts a set of
oracle-required statements, and applies our validity-oriented
mutations to improve the validity rate. Then, it sends the query
to the oracle to create functionally equivalent query counter-
parts. SQLRight feeds all generated queries to the DBMS, and
collects the execution results and the coverage information.
After that, SQLRight invokes the oracle to compare the results
of different queries to identify logical bugs. At last, it inserts
the coverage-improving queries into the queue for future mu-
tations. We implemented four oracles, including two proposed
in previous works [43, 44] and two proposed in this paper.

We evaluate SQLRight on three popular DBMS systems:
SQLite [51], PostgreSQL [39] and MySQL [34]. SQLRight suc-
cessfully detects 18 logic bugs within 60 days. We have re-
ported all of our findings to their developers: all bugs get
confirmed, and 14 have been fixed. To understand the con-

01 CREATE TABLE person (pid INT);
02 INSERT INTO person VALUES (1), (10), (10);
03 CREATE UNIQUE INDEX idx ON person (pid) WHERE pid=1;
04 SELECT DISTINCT pid FROM person WHERE pid=10;
05 -- output: 10\n10
06 -- expect: 10

Listing 1: A logical bug of SQLite due to the improper optimization
on DISTINCT when the index is a unique partial index.

tributions of code coverage and query validity, we conduct
unit tests by disabling each of them one by one. Our evalua-
tion shows that both the coverage and the validity help find
more logical bugs, but the latter makes more contributions
than the former. We also compare our system with the state-
of-the-art tools, including SQLancer (using oracles to detect
logical bugs) and Squirrel (using code coverage to detect
crashes and assertion failures). We port our oracle APIs to
Squirrel to help it detect logical bugs. After testing for 72
hours, SQLRight reports 12 unique logical bugs, Squirrel
detects one bug, and SQLancer does not find any bug. The
result shows that combining the coverage-based guidance and
oracles can help trigger more logical bugs in DBMS systems.

In summary, this paper makes the following contributions:
• We study the efficacy of coverage-guided fuzzing in

detecting logical bugs for DBMS systems and confirm
two useful factors: query validity and code coverage.

• We implement SQLRight, a coverage-guided fuzzer to
detect logical bugs for DBMSs. SQLRight provides gen-
eral APIs to simplify the oracle development and embeds
validity-oriented mutations to improve the query quality.

• We evaluate SQLRight on the real-world DBMS systems
and find 18 logical bugs. Our unit tests demonstrate the
contribution of different components of our tool.

We have released the source code of SQLRight at https:
//github.com/psu-security-universe/sqlright to
help enhance the security and robustness of DBMS systems.

2 Background & Challenges

2.1 An Example Logical Bug
Listing 1 shows a logical bug of SQLite, which is related to
the unique partial index. This bug was detected by our tool
SQLRight, and has been fixed by SQLite developers. The first
statement creates a table person, which has only one column
pid with type INT. The second statement inserts three rows
into the table, one 1 and two 10s. The third statement creates
a unique partial index idx, which only maintains records for
rows whose pid value is 1. Therefore, only the first row will be
connected into idx. The last SELECT statement asks for rows
whose pid value is 10, where the keyword DISTINCT requires
removing redundant results. Based on the table content, the
result should be one row 10. However, SQLite produces two
rows 10 10, violating the DISTINCT requirement.

The problem is due to an incorrect optimization of SELECT.
When all columns in WHERE are connected to some unique

2

https://github.com/psu-security-universe/sqlright
https://github.com/psu-security-universe/sqlright

01 CREATE TABLE person (pid INT);
02 INSERT INTO person VALUES (1), (10), (10);
03 SELECT DISTINCT pid FROM person WHERE pid=10;

Listing 2: A functional-equivalent query of Listing 1 query by
deleting the CREATE UNIQUE INDEX statement.

indexes, SQLite treats the DISTINCT keyword as unnecessary
and simply ignores it during the query processing. However,
it forgets the case of partial index, where only partial rows are
connected. To fix this bug, SQLite checks the index type and
only applies the optimization to the case of complete indexes.
Security Impact. This logical bug treats duplicated data
rows as unique. Depending on the concrete use cases, it
can lead to various security consequences. For example, if
the query intentionally uses DISTINCT to hide the number
of matched rows for privacy purposes, the bug will leak the
number information. If the query is used to distribute random
passwords to users, it may send the same password to multiple
different users. Since SQLite is widely used in public, line in
3.5 billion smartphones [51], we believe this deduplication
bug has severe functional and security consequences.

2.2 Oracles for Logical Bug Detection
Logical bugs are more challenging to detect than memory-
related issues. Once a memory bug is triggered, the execution
will likely crash, and we can capture that easily. Most logical
bugs do not crash the program, but just produce incorrect
results. We need an oracle to provide the expected result. For
example, in Listing 1, the oracle should indicate the expected
result as 10. However, constructing a complete, error-free
oracle is challenging. Senior analysts can manually analyze
results to identify bugs, but cannot handle large-scale test
cases. Differential analysis provides an automatic, scalable
solution [16,29,49,52]. For example, RAGS sends one query to
different DBMSs and compares their results to find bugs [49].
However, due to the diverse dialects and extensions, popular
DBMSs only share a small portion of features, and cross-
DBMS validation cannot detect DBMS-specific bugs [49].

Recent works construct functionally equivalent queries and
check whether the DBMS produces the same result for all
queries [43–45]. For example, for a given query, oracle NoREC
shifts all conditions from WHERE clauses to SELECT expressions,
which effectively disables most optimizations applied to the
original query [43]. The number of TURE rows for the modi-
fied query should be the same as the number of rows for the
original one. Oracle TLP splits a condition x in a WHERE clause
into three subqueries: x IS TRUE, x IS FALSE, and x IS NULL.
It combines the results from three subqueries and checks the
equivalence with the original one [44]. As oracles are built
on high-level semantics instead of low-level implementations,
we can use them to test multiple DBMS systems [30].

We can define a simple oracle, dubbed Index, to detect the
bug in Listing 1: removing indexes from the database should
not affect the query result. We can implement oracle Index

Mutation
Engine

Validation
Engine

Result
Analyzer

Squirrel

code coverage

Seed
Inputs

Crash
Bugs

Database Management System

Figure 1: Overview of Squirrel [71]. It utilizes the coverage-based
guidance to test DBMS systems for crashes and assertion failures.

to delete existing indexes (or inserts new ones) and check
whether the DBMS produces the same result as before. One
functionally equivalent form of Listing 1 is given in Listing 2
by deleting the CREATE UNIQUE INDEX statement. We can use
oracle Index to detect this bug without any domain knowledge.
More importantly, we can extend the test to a large scale.

2.3 Coverage-guided Testing

Coverage-guided testing, or fuzzing [32], has been widely
used to test a large set of programs and successfully found
thousands of bugs [18, 27, 48, 70]. Modern fuzzing tools,
called fuzzers, utilize code coverage to guide input selection
and mutation. Specifically, given one program input, a fuzzer
first randomly updates its content to generate a set of new
inputs. It feeds new inputs to the program and monitors the
execution. If the program crashes or reports assertion failures,
the fuzzer treats the input as the proof-of-concept (PoC) of the
underlying bug. For input that triggers no crashes, the fuzzer
will check whether the execution reaches new code paths, like
basic blocks or branches. If so, it will add the input into a
queue. Otherwise, it will drop the input and pick up the next
input from the queue for another round of fuzzing. Coverage-
guided testing has been used to test various programs, includ-
ing but not limited to operating systems [11, 22, 37, 63, 65],
compilers [10, 19, 38], web browsers [17, 48, 66], document
readers [12, 64], and even smart contracts [20, 35, 62].

Recent works also ported coverage-guided fuzzing to test
DBMS systems [21, 26, 60, 71]. Figure 1 shows an overview
of Squirrel [71], a recent work that aims to detect crashes
and assertion failures from DBMS systems. Squirrel takes a
set of inputs, i.e., SQL queries, as the seed of fuzzing. It first
translates the query into an intermediate representation (IR),
which contains many structural information. Then, Squirrel
takes three mutation methods to modify the query IR and cre-
ate new ones, including node insertion, deletion and replace-
ment. For each newly generated IR, Squirrel builds the data
dependency graph between different operands (e.g., tables
and columns) and fills the operands with randomly generated
strings. After that, it translates the new IR back to queries and
feeds it to DBMS. At last, Squirrel reports crashes and pri-
oritizes code-revealing queries for the next round of fuzzing.
Squirrel successfully found a set of crashes and assertion
failures from commonly used DBMS systems such as SQLite.

3

Seed
Inputs

Mutation
Engine

Validation
Engine

Result
Analyzer

SQLRight

Logical
Bugs

Oracle APIs

TLP INDEX ROWID … …

Database Management System

NoREC

code coverage

Figure 2: Overview of SQLRight. It utilizes the coverage-based
guidance to test DBMS systems for logical bugs.

2.4 Challenges of Fuzzing Logical Bugs
To the best of our knowledge, no effort has ever tried to
apply coverage-guided fuzzing to test DBMSs for logical
bugs. There are mainly two challenges that hinder researchers
from combining fuzzing and DBMS oracles. First, current
fuzzers still cannot generate high-quality SQL queries. For
example, in the most recent work, Squirrel embedded two
new techniques, specifically syntax-preserving mutation and
semantics-guided instantiation, aiming to improve the valid-
ity of the automatically generated queries. However, even
with these advanced techniques, Squirrel can merely achieve
around 30% validity for SQLite, and gets even worse validity
rates for other DBMS systems. We can tolerate such low va-
lidity when testing DBMSs for crashes and assertion errors,
as invalid queries may still trigger some bugs. However, a tool
for finding logical bugs cannot make use of any invalid query,
since the DBMS will not produce any meaningful results and
the oracle cannot work. Second, current fuzzers mainly rely
on operating systems and sanitizers to detect bugs (like asser-
tion failures) [13, 28, 46, 47]. They cannot collaborate with
DBMS oracles to detect logical bugs. We need to redesign
the fuzzer architecture to support diverse DBMS oracles.

3 Design of SQLRight

We propose two practical solutions to address the aforemen-
tioned challenges and adopt the coverage-based guidance on
testing DBMS for logical bugs. First, we provide the validity-
oriented generation, which contains a set of strategies to pro-
duce valid, deterministic SQL queries (§3.1). The generated
queries not only achieve high validity in syntax and semantics,
but also exclude random behaviors which may cause false
positives. Second, we design a set of general, comprehensive
APIs to support developing new DBMS oracles (§3.2). These
APIs decouple oracles and fuzzers, making it easier for users
to test DBMS systems. They also assist DBMS developers to
adopt coverage-based guidance for finding logical bugs.
System overview. Figure 2 shows an overview of our tool,
SQLRight, the first testing platform that combines coverage-
based guidance, validity-oriented mutations, and oracles to
find logical bugs for DBMS systems. It accepts the target
program (i.e., the DBMS) and a set of sample queries (i.e.,

cooperative
mutation

query
mutation

validation DBMSseed
inputs

select
queue

normal
queue

compare logical
bugs

Figure 3: Cooperative mutation. To support the oracle to compare
results, SQLRight adopts a dedicated select-queue and a cooperative
mutation step to generate valid SELECT statements.

SQL statements) as inputs and will produce reports of logical
bugs. First, SQLRight adds all sample queries into a queue.
For each round of fuzzing, it picks up one query from the
queue and applies mutation to generate new queries. Then, it
updates query operands, like table names and column names.
After that, SQLRight sends the new query to the DBMS and
inspects the execution result to identify unexpected behaviors.
If the new query triggers new code, SQLRight adds the query
into the queue for future testing. Unlike traditional memory-
bug fuzzers (like Squirrel in Figure 1), SQLRight cooperates
with DBMS oracles to produce high-quality queries to iden-
tify logical bugs. Specifically, for query mutation, it invokes
oracle APIs to update oracle-specific SQL statements to pre-
pare for result checking. For query validation, it again calls
oracle APIs to translate the query into semantically equivalent
variants. After the execution, it relies on the oracle to decide
whether the queries trigger logical bugs.

3.1 Validity-oriented Query Generation

SQLRight demands high-quality SQL queries to stress various
aspects of different DBMSs. Any queries that cause syntax
or semantic errors would not be useful for finding logical
bugs. Unfortunately, generating semantically correct queries
has proven to be NP-hard [29]. Recent fuzzers utilize type-
based mutation and semantic-guided instantiation in order
to produce valid queries [71]. However, their validity rate,
about 30%, is still insufficient to effectively test DBMS sys-
tems. Even worse, most of the generated queries are not ready
for detecting logical bugs. Therefore, we proposed several
practical techniques to improve query validity.

3.1.1 Cooperative Mutation

SQLRight takes two separate mutation strategies in parallel
to generate different components of a query set. As shown in
Figure 3, it maintains two queues: the select queue contains
only SELECT statements and is used to generate proper SELECT
queries that produce outputs; the normal queue hosts other
statements and is used to prepare the database for testing,
like table creation and value insertion. During the fuzzing
initialization, SQLRight scans all seed inputs, saves all SELECT
statements to the select queue, and keeps other statements in
the normal queue. For each fuzzing round, SQLRight collects
a set of statements from the normal queue and relies on the
normal mutation engine to generate new queries. Then, it

4

abc

SELECT COUNT(*) FROM v0 WHERE v1 = 0;

opt_WHERE_statement

WHERE where_clause

opt_FROM_statement

FROM from_clause

SELECT_statement

SELECT v1 = 0 FROM v0;

from_clausewhere_clause

opt_FROM_statement

FROM

SELECT select_clause

SELECT

SELECT_statement

original:

mutation:

Restricted

Figure 4: Cooperative mutation on SELECT. To support the NoREC
oracle, we fix SELECT_statement, FROM and WHERE of the statement
and leave others for the mutation engine to change.

invokes the cooperative mutation of the oracle to create and
append several SELECT statements. After the combination, we
leverage the instantiation to build a concrete query set.

During the cooperative mutation, the oracle preserves the
query elements that are useful for the correctness test. For
example, oracle NoREC requires the SELECT statement to have
both FROM clause and WHERE clause. We provide interfaces for
the oracle to notify the mutation engine not to delete these nec-
essary nodes or add new nodes if the original statement does
not have one. Figure 4 illustrates how to control mutations
on the statement SELECT COUNT(*) FROM v0 WHERE v1=0.
Given the IR of the query, we add attributes to three nodes,
specifically, SELECT_statment, FROM, and WHERE, to mark them
as immutable. As a result, the crucial components for oracle
NoREC are preserved. The mutation engine still has full flexi-
bility to update the from_clause node and the where_clause
node to generate new SELECT statements. The IR-based muta-
tion engine supports various patterns and different conditions
in the from_clause and where_clause, and thus provides rich
capability comparable to the unconstrained mutator [71].

3.1.2 Dedicated Parsing

We customize our mutation engine for each DBMS to im-
prove syntax correctness. Most popular DBMS systems have
their own customized SQL dialects, which only share limited
features. Therefore, one unified SQL grammar for common
functionalities only covers a small portion of DBMS code and
cannot find bugs in DBMS-unique features [49]. In contrast, a
catch-all grammar that aims to support all features could lead
to many invalid queries. Listing 3 shows an example that a
string with the single quote symbol has different meanings in
different DBMSs. SQLite can run this query successfully, as
it treats a single-quoted string as a constant by default or as an
identifier if a string is not allowed in its current location. How-
ever, PostgreSQL reports an error for this query as it never
accepts single-quoted strings as identifiers. To address the
limitation, we design a tool to port the parser of each DBMS
into SQLRight automatically. Our observation is that most
popular DBMS systems use GNU Bison [14] to compile their
parser front-ends. Therefore, we follow the grammar rules
defined by Bison and translate the DBMS parser front-ends to
SQLRight’s IR. Thanks to the well-documented Bison format,

01 CREATE TABLE v0 (v1 TEXT);
02 INSERT INTO v0 VALUES ('text');
03 SELECT v1 FROM 'v0';

Listing 3: Queries allowed in SQLite but rejected by PostgreSQL.
SQLite takes flexible rules to identify strings and can treat the ‘v0’
as an identifier, while PostgreSQL strictly takes ‘v0’ as a string.

our tool can easily port different parsers for SQLRight. With
the original DBMS parser front-ends, SQLRight can support
the full dialect syntaxes for each DBMS and guarantees high
syntax correctness to improve query validity.

3.1.3 Context-based IR Instantiation

The previous work Squirrel [71] identifies data dependency
among all SQL statements to help instantiate query operands,
like table names and column names. However, the dependency
graph constructed by Squirrel tightly couples multiple SQL
statements into one static graph. When dealing with compli-
cated queries, it cannot update the data dependency to reflect
the dynamic SQL context. Specifically, it keeps the static data
dependency unchanged across the whole query sequence and
cannot adjust itself to fit in the ever-changing relationship
between different SQL statements. To address this limita-
tion, we design a context-based IR instantiation algorithm. It
dynamically updates the data dependency based on the SQL
context and fills in accurate concrete values to the query skele-
tons. Instead of grouping multiple SQL statements into one
dependency graph, SQLRight solves one SQL statement at a
time. It only saves the necessary dependency information into
the library when solving multiple SQL statements.

Listing 4 shows how SQLRight utilizes the context to in-
stantiate SQL IR. To generate new queries, SQLRight ignores
all existing operands and will assign them different names.
The first statement creates one table with three columns. Since
this is a creation operation, SQLRight allocates v0 as the table
name, c1, c2, and c3 as the column names, and saves these
names into the context. When we need tables and columns,
SQLRight can quickly retrieve them from the current context.
The second statement inserts one row into a table. SQLRight
searches in the current context and finds only one table avail-
able, i.e., v0 with three columns. Therefore, it uses v0 here
and prepares one row with three values. The next statement
changes one column name. After searching in the current con-
text, SQLRight finds one table name v0 and three associated
column names c1, c2 and c3. Based on the semantics, it uses
v0 as the table name, and randomly picks c3 as the old column
name. It also allocates another column name c4 as the new
name. After this statement, SQLRight updates the context to
drop c3 from v0 and add c4 instead. When it comes to the
SELECT statement, it can find table name v0 and three associ-
ated columns, excluding the old c3. In contrast, the original
method of Squirrel will fail to capture the dynamic change
by ALTER and may use c3 as a column name of v0 for SELECT.

5

01 -- Context-based IR Instantiation
02 CREATE TABLE v0 (c1 INT, c2 INT, c3 INT);
03 -- save v0 & mapping c1->v0, c2->v0, c3->v0.
04 INSERT INTO v0 VALUES (0, 0, 0);
05 -- Get v0 & 3 columns from v0.
06 ALTER TABLE v0 RENAME c3 TO c4;
07 -- drop c3->v0 & add c4->v0.
08 SELECT * FROM v0 WHERE c1 = c2;
09 --
10 -- Squirrel dependency graph
11 SELECT * FROM v0 WHERE c1 = c3;
12 -- Error: no such column: v0.c3

Listing 4: Example that demonstrates the benefits of SQLRight’s
Context-based IR Instantiation.

3.1.4 Non-determinism Mitigation

Several DBMS functionalities contain non-deterministic be-
haviors, which make two executions produce different results
even when no logical bug is triggered. Such queries will
confuse DBMS oracles and lead to false alarms. Previous
fuzzers that focus on memory-related bugs do not care about
the query results and just ignore this problem. Therefore, we
cannot directly use their generated queries to find logical bugs.
To avoid false alarms in this category, we identify and remove
statements or keywords with non-deterministic behaviors.

Currently, SQLRight considers non-deterministic behaviors
in three categories. One category contains functions returning
random results by design. For example, random() in SQLite
produces a pseudo-random integer number. Another category
contains queries whose results depend on ever-changing en-
vironment variables, like date and time (e.g., julianday()
in SQLite and current_timestamp in PostgreSQL). Listing 5
shows an example that makes the oracle report a false alarm.
The example creates two tables, v0 with ROWID and v2 without
ROWID. Based on SQLite document, the same query on these
two tables should return the same result. However, due to
the random behavior of random(), two executions produce
different results, and the oracle will report a potential bug
(false positive). Replacing random() with a constant value or
deleting the INSERT statement can fix the problem.

The third source of non-determinism comes from unde-
fined behaviors. Specifically, the result is not specified in the
DBMS standard, and it completely depends on each dynamic
execution to (randomly) decide how to generate the result.
For example, the LIMIT clause cuts off the result of SELECT
to at most N rows. It is designed to prevent a large number
of outputs. However, the LIMIT clause leads to inconsistent
results between semantically equivalent queries since it de-
pends on the DBMS to decide which N rows to return. We
remove LIMIT clauses from all generated SQL queries.

3.2 General Interfaces for DBMS Oracles

Oracles are crucial to detect logical bugs, but no oracle can
detect all bugs from all DBMS systems. Considering the
various SQL dialects and extensions [49], we need multiple
diverse oracles to cover different logical bugs. It is essential

01 CREATE TABLE v0 (v1 PRIMARY KEY)
02 INSERT INTO v0 VALUES(random());
03 SELECT * FROM v0;
04 --------------------------------
05 CREATE TABLE v2 (v3 PRIMARY KEY) WITHOUT ROWID
06 INSERT INTO v2 VALUES(random());
07 SELECT * FROM v2;

Listing 5: False positive case due to non-deterministic behaviors.
Function random() returns a random integer value, and thus running
these two queries will produce different results.

to make our fuzzing platform support many different oracles.
In this work, we propose a set of general APIs that allow
developers to adopt existing oracles and develop new ones.

SQLRight provides four general APIs for the fuzzer to com-
municate with DBMS oracles, specifically, preprocess(),
append_output(), transform() and compare(). We explain
the purpose of each API using Table 1, which shows the cur-
rently supported oracles and the functionalities of their APIs.
The Basic column defines the default behaviors of all oracles.

Preprocessing. preprocess() takes the query set as input
and performs necessary operations to get it ready for future
steps. One common task here is to check the applicability
of the oracle on the given query set. If necessary, the oracle
can modify the query set to produce compatible queries. For
example, oracle Rowid tries to find CREATE TABLE statements
from the query. If no tables are created, it will notify the fuzzer
to skip the current query and move on to the next one. Oracle
Index identifies and deletes CREATE UNIQUE INDEX statements
from the query set. By design, a column with a unique index
will not allow insertions of duplicated values, so having it or
not will affect the final results and may lead to false alarms.

Appending Output Statements. Since we need to inspect
the results of DBMS executions to identify bugs, SQLRight
provides the append_output() API for each oracle to insert
proper output-generation statements. The SELECT statement
queries the underlying database and returns the results, so
the default behavior of this API is to append several SELECT
statements to the end of the given query set. During the query
validation, these statements will be filled with proper table
names and column names so that they can produce meaningful
results. Oracles can have their special output statements or ap-
ply other policies based on their functionalities. For example,
because oracle NoREC shifts conditions from WHERE to SELECT,
it only appends SELECT statements that have a FROM clause
and a WHERE clause (both clauses are optional for SELECT).

Transformation. The core task of an oracle is to transform
one query into different equivalent variants. transform() ac-
cepts the query set as input and returns one or more equivalent
query sets. For example, oracle NoREC returns only one variant
where the WHERE conditions in the original query are moved
to the SELECT expressions. Oracle Index may insert or delete
various CREATE INDEX statements into the given query set and
thus can result in multiple variants. SQLRight executes all
variants returned by transform() and compares their results.

6

API Basic NoREC TLP Index Rowid
preprocess() check applicability basic basic remove UNIQUE INDEX basic
attach_output() append random SELECT SELECT COUNT(*) FROM x WHERE x; basic basic basic
transform() - expr: WHERE→ SELECT /0 → T ∪ F ∪ NULL insert CREATE INDEX add WITHOUT ROWID to table
compare() #rows = #rows #rows = #(TRUE rows) basic basic basic

Table 1: Oracles and their APIs. Our system currently supports four oracles: NoREC, TLP, Index and Rowid. Basic is the base interface that
implements default behaviors. ∪ combines the results of different queries; - means no functionality; basic means the default behavior in Basic.

Result Comparison. SQLRight allows the oracle to define
their own comparison methods to identify unexpected results.
A simple comparison algorithm could require all results to be
exactly the same. However, this method could be overly strict
and may introduce false alarms. For example, in the results
of the Index oracle, the order of rows could be different due
to extra indexes. Therefore, we provide a loose comparison
function that merely checks the number of rows in the results.
However, if aggregate functions (like MIN and SUM) are used
in SELECT, the comparison should expect the same output.
We take special actions to handle oracle NoREC, as the new
query form always generates one row for each record (TRUE
or FALSE based on the condition). In this case, the compare()
API should compare the number of rows in the original result
and the number of TRUE rows in the transformed one.

We present the detailed steps that SQLRight takes to find
the bug of Listing 1 using oracle Index in Appendix B.

4 Implementation

We implement SQLRight as a prototype of the first coverage-
guided DBMS fuzzer for finding logical bugs. Our implemen-
tation is based on Squirrel [71] and SQLancer [30]. Specifi-
cally, we adopt the query-mutation module of Squirrel and
implement our general oracle APIs and validity-oriented mu-
tations. Currently, SQLRight supports four oracles, including
NoREC and TLP ported from SQLancer [43, 44], and Index and
Rowid we propose in this paper. We port the parsers of SQLite,
MySQL, and PostgreSQL to SQLRight to test these DBMSs ef-
fectively. Next, we present several implementation details that
could help the future development of other DBMS fuzzers.
Memory-efficient Mutation. We redesign the way of stor-
ing SQL queries to reduce memory use. Squirrel uses a
library to map each node type, like select-clause, to a set of
IR nodes. At the time of insertion or replacement, it visits the
library to retrieve a set of type-matched candidates. Although
keeping IR nodes in memory accelerates the mutation, each
IR node occupies non-trivial memory, and the library will
take hundreds of Gigabytes after testing for a few days. For
example, Squirrel allocates more than 16KB to store the
simple queries in Listing 1. To reduce the memory use, we
store the query string instead of the IR in the memory and
save the string pointers in the library. Since the string is much
smaller (e.g., 117B for Listing 1), one can run the fuzzer on
low-resource platforms and easily launch a large number of
instances. The tradeoff is that for every time we mutate the

query, SQLRight needs to parse the string into IR again, which
will slow down the mutation. The evaluation in §5.2 shows
that SQLRight generates fewer queries than Squirrel within
the same time period. However, thanks to the validity-oriented
design, SQLRight achieves a higher speed in generating valid
queries, which helps it outperform Squirrel on coverage.
Bug Bisecting. We adopt the bug bisecting method to identify
duplicated bug reports [21]. For each bug report, we use the
binary search algorithm to locate the commit that initially
introduced the bug from all code commits. With the optimistic
assumption that one commit introduces one bug, we use the
first buggy commit to label the underly bug. If two queries
share the same first buggy commit, we only report one of
them and treat another as duplicated. We implement our bug
bisector using Python, which takes the bug-triggering query
as input and automatically locates the first buggy commit.
When it reaches a new commit, the bisector will compile the
new version and test it with the bug-triggering query. To make
bisecting faster, we save every DBMS executable into a cache
system and search in the cache to find built binary quickly. If
all necessary versions are cached, our bisector can complete
the task within one second. Note that fossil [41], the version
control system for SQLite, provides the bisect command to
assist bug bisecting. However, it only calculates the middle
commit and updates the code accordingly. Our bisector will
compile the code and verify the test result automatically.
Query Minimizer. Bug-triggering queries may contain many
complicated statements, which are difficult for developers
to diagnose. Therefore, we develop a utility that can auto-
matically minimize the bug-triggering query. Our minimizer
makes use of the IR delete operation of SQLRight, which
removes one node from the query IR representation. After re-
moving one node, if the remaining query is still valid and can
trigger the bug, we will delete more nodes from the current
statements; otherwise, we will add the node back and move
on to delete the next node. The minimization algorithm keeps
the deletion process until that removing any node will render
the remaining part invalid or miss the bug. In that case, we
will report the current query as the minimum version.

5 Evaluation

We evaluate our tool SQLRight on real-world popular DBMS
systems to answer the following questions:
Q1. Can SQLRight detect real-world logical bugs? (§5.1)

7

ID DBMS Description Oracle D Status Fix
Logical Bugs
1 SQLite UNIQUE PARTIAL INDEX, DISTINCT INDEX 5 fixed c2f940b
2 SQLite JOIN and LIKELY/UNLIKELY NoREC 3 fixed 2363a14
3 SQLite IN-early-out optimization TLP 2 fixed eb40248
4 SQLite EXISTS (SELECT...) to IN NoREC 2 fixed 16252d7
5 SQLite Misuse aggregate in ORDER BY NoREC 2 fixed 0d11d77
6 SQLite Aggregate in ORDER BY NoREC 1 confirmed -
7 SQLite WITHOUT ROWID with DESC NoREC 7 fixed f65c929
8 SQLite unordered WITHOUT ROWID table ROWID 2 fixed c21bc5a
9 SQLite mixed table name and CTE NoREC 2 fixed 0f0959c
10 SQLite inconsistent constant propagaion NoREC 1 fixed 9be208a
11 SQLite IS NOT NULL optimization NoREC 2 fixed 8cc2393
12 SQLite large value loss of precision NoREC 4 fixed f9c6426
13 SQLite constraint check in ALTER TABLE NoREC 2 fixed e379499
14 SQLite equivalence transfer optimization NoREC 2 fixed 8b24c17
15 MySQL ANY ALL optimization error NoREC 5 confirmed -
16 MySQL UNIQUE INDEX with NULL NoREC 1 confirmed -
17 MySQL GTID_SUBSET NoREC 4 fixed 8.0.30
18 MySQL large value in GROUP BY TLP 3 confirmed -

Crashes
1 SQLite distinct aggregation - 4 fixed 0e47898
2 SQLite ROWID from views - 2 fixed 0f0959c
3 SQLite nested CTE - 5 fixed 94225d6
4 SQLite foreign_key_check - 2 fixed 68db1ff
5 SQLite UPDATE from VIRTUAL TABLE - 3 fixed 2547cfe

Assertion Failure
1 SQLite pLeft==pRight - 3 fixed 240f749
2 SQLite iColnCol - 4 fixed b986600
3 SQLite memIsValid(&aMem[pOp->p3]) - 2 fixed c9f0b9c
4 SQLite target>0&&target<=pParse->nMem - 2 fixed 7072404

Table 2: Detected Bugs. SQLRight detected 27 bugs, including 18
logical bugs, 5 crashes and 4 assertion failures. We have reported
these bugs to their developers and got 27 confirmed and 23 fixed. D
(depth) means the number of mutations to trigger the bug.

Q2. Can SQLRight find more bugs than existing tools? (§5.2)
Q3. How does code coverage guide the testing? (§5.3)
Q4. How does query validity help detect bugs? (§5.4)

Experimental Setup. To answer Q1, we use SQLRight to test
three popular DBMS systems, SQLite, MySQL and PostgreSQL,
which are commonly used in previous works to evaluate bug-
finding tools for DBMSs [21,43–45,71]. For Q2, we compare
SQLRight with SQLancer and Squirrel, the state-of-the-art
bug-finding tools for DBMSs. Since Squirrel cannot detect
logical bugs, we port our oracles to Squirrel, denoted as
Squirrel+oracle. To answer Q3, we compare coverage feed-
back with three methods to handle new queries: dropping all,
saving all and randomly saving some. To answer Q4, we dis-
able each query-validity component of SQLRight to find the
impact on code coverage, query validity and bug detection.

We conduct SQLite experiments on a Ubuntu 20.04 system
with two 28-cores Intel(R) Xeon(R) Gold 6258R CPUs and
791 GB memory. We perform the experiments of PostgreSQL
and MySQL on three computers with Ubuntu 20.04 system,
8-cores Intel(R) Core(TM) i7-10700 CPU, and 64 GB mem-
ory. Since SQLancer requires the particular SQLite version
3.34.0, we adopt this version for evaluation. For other DBMSs,
we choose the latest version, specifically PostgreSQL 14.0
and MySQL 8.0.27. We compile SQLite and PostgreSQL using
AFL [70] but enlarge the coverage map size to 256K to miti-
gate the collision issue [15]. Since MySQL is multi-threaded,
to avoid data race on updating the coverage map, we instru-

ment it with block coverage and disable hit counts. We collect
the seed corpus from the official unit tests of each DBMS,
specifically, SQLite TCL Test Scripts, PostgreSQL official
test infrastructure, and MySQL unit test samples. We use the
same seed corpus for SQLRight and Squirrel. SQLancer is a
generation-based tool and does not require any seed input.

5.1 DBMS Logical Bugs
Due to the limited availability of resources, we conduct bug-
finding experiments for each DBMS with different durations.
Specifically, we spend 60 days testing SQLite, 14 days test-
ing PostgreSQL and 7 days testing MySQL. In total, SQLRight
detects 27 bugs, including 18 logical bugs, 5 crashes, and
4 assertion failures. Except for 3 logical bugs from MySQL,
all other bugs are from SQLite; we do not find any bugs
from PostgreSQL. Despite the different testing durations, we
can find the similar pattern of bug numbers from previous
works [43–45, 71], where most bugs are from SQLite, and
very few are from PostgreSQL. We have reported all findings
to their developers. All bugs have been confirmed, and 23 of
them have been fixed. SQLRight detects more logical bugs
than crashes and assertion failures. Since we design a set of
solutions to improve the query validity, SQLRight generates
fewer abnormal statements that render the DBMS crashing.

Table 2 provides more bug details. Column “Description”
shows that logical bugs come from diverse optimizations,
and many bugs are due to an interplay of multiple optimiza-
tions. For example, the first bug is caused by an improper
DISTINCT optimization when the table has a unique partial in-
dex: DISTINCT and UNIQUE PARTIAL INDEX work well alone,
but the bug appears when a query satisfies both conditions.
Column “Oracle” presents the oracle that detects each bug.
Most bugs are detected by NoREC, and other oracles detect one
or two bugs. In fact, several bugs can be detected by multiple
oracles through different queries, but we only record the first
detection and treat others as duplications.

We present the details of two logical bugs to help demon-
strate the necessity of feedback and validity for bug finding.
Appendix A presents the details of three more logical bugs.
Necessity of Coverage-based Feedback. Listing 6 demon-
strates a SQLite logical bug due to incorrect index lookup.
The first statement creates a WITHOUT ROWID table with two
columns. v1 is the PRIMARY KEY of the table and is in DESC
order. The second statement inserts one row to v0, and the
third statement creates index v3 on column v2. The SELECT
statement searches for rows that satisfy conditions v2=10 and
v1<11. Row (10,10) satisfies the condition and should be re-
turned. However, due to an incorrect index search that mixes
up the DESC PRIMARY KEY and index v3, SQLite does not re-
turn anything. At the end of Listing 6 we show the related
seed input that is mutated to trigger the bug. As we can see,
the original input lacks most of the necessary components to
trigger the bug, like WITHOUT ROWID, DESC, INDEX, and SELECT.

8

01 CREATE TABLE v0 (v1 INT PRIMARY KEY DESC,
02 v2 INT) WITHOUT ROWID;
03 INSERT INTO v0 VALUES (10, 10);
04 CREATE INDEX v3 ON v0 (v2);
05 SELECT * FROM v0 WHERE v2 = 10 AND v1 < 11;
06 -- output: (empty)
07 -- expect: 10|10
08 -- original seeds -------
09 CREATE TABLE v0 (v1 INT PRIMARY KEY, v2 INT);
10 INSERT INTO v0 VALUES (10, 10);

Listing 6: A logical bug of SQLite that mutes outputs
because of incorrect index lookup.

01 CREATE TABLE v0 (v1, v2 PRIMARY KEY);
02 CREATE INDEX v3 ON v0 (v2, v2);
03 INSERT INTO v0 (v1, v2) VALUES (10, 'x');
04 SELECT * FROM v0 AS a13, v0 AS a14
05 WHERE a13.v1 = a13.v2 AND a13.v1 = 'x';
06 -- output: 10|x|10|x
07 -- expect: (empty)
08 SELECT * FROM v0 AS a13, v0 AS a14
09 WHERE v1 = v2 AND v1 = 'x';
10 -- output: Error: ambiguous column name: v1

Listing 7: A logical bug of SQLite related to column
aliases. SELECT statements should return nothing

Oracle Feedback Mutation Depth Max
0 1 ∼ 3 4 ∼ 7 7+ Depth

NoREC

SQLRight 24738 9761 3125 2443 25
SQLRightdrop 24738 10478 - - 1
SQLRightrand 24738 7753 2561 - 7
SQLRightsave 24738 10030 356 - 4

TLP

SQLRight 24738 9662 3594 1580 21
SQLRightdrop 24738 10294 - - 1
SQLRightrand 24738 7217 881 - 7
SQLRightsave 24738 8916 - - 3

Table 3: Code coverage triggered by queries with
different depths. SQLRight maintains higher depth.

0 12 24 36 48 60 72
0
1
2
3
4
5
6

Un
iq

ue
 B

ug

(a) SQLite logical bugs
0 12 24 36 48 60 72

0

1

2

3

4

Un
iq

ue
 B

ug

(b) MySQL logcial bugs
0 12 24 36 48 60 7220

25

30

35

40

Co
ve

ra
ge

 (k
)

SQLRight
Squirrel+oracle
SQLancer

0 12 24 36 48 60 7220

25

30

35

40

Co
ve

ra
ge

 (k
)

(c) SQLite code coverage
0 12 24 36 48 60 72100

120

140

160

180

200

Co
ve

ra
ge

 (k
)

(d) MySQL code coverage
0 12 24 36 48 60 72

0
20
40
60
80

100
120

Co
ve

ra
ge

 (k
)

(e) PostgreSQL code coverage

0 12 24 36 48 60 72
30
40
50
60
70
80
90

Qu
er

y
Va

lid
ity

 (%
)

(f) SQLite query validity
0 12 24 36 48 60 72

0
10
20
30
40
50
60

Qu
er

y
Va

lid
ity

 (%
)

(g) MySQL query validity
0 12 24 36 48 60 72

0
5

10
15
20
25
30

Qu
er

y
Va

lid
ity

 (%
)

(h) PostgreSQL query validity

0 12 24 36 48 60 72
105

106

107

Va
lid

 Q
ue

rie
s p

er
 H

ou
r

(i) SQLite valid stmts / hr
0 12 24 36 48 60 72

100

101

102

103

104

105

Va
lid

 Q
ue

rie
s p

er
 H

ou
r

(j) MySQL valid stmts / hr
0 12 24 36 48 60 72

101

103

105

107

Va
lid

 Q
ue

rie
s p

er
 H

ou
r

(k) PostgreSQL valid stmts / hr

Figure 5: Comparison between different tools (NoREC). a-k show the number of
unique bugs, code coverage, query validity and validity over time. SQLancer does not
implement NoREC for MySQL, so we skip the evaluation. We run each fuzzing instance
for 72 hours for and repeat five times.

From the seed input, SQLRight must accumulate seven con-
secutive mutations to generate this bug-triggering query. Each
mutation triggers new code coverage and is saved to the queue.
Without the guidance of code coverage, SQLRight can hardly
maintain such a deep mutation chain, nor detect this bug.

Necessity of SQL Validity. With validity-improvement tech-
niques, SQLRight can detect bugs that Squirrel+oracle and
SQLancer will miss. Listing 7 shows one logical bug that can
only be detected with the per-DBMS parser and the context-
based instantiation. The first statement creates table v0 with
two columns: v1 and v2. The second line creates an index
attached to two v2. The third statement inserts one row into
the table. Two SELECT statements search in v0 to find rows
where v1=v2 and v1=’x’. These conditions are not satisfied,
as v1 and v2 have different values. However, if we refer table
v0 using aliases, SQLite will incorrectly optimize the query
to ignore the first condition and return the row. SQLancer
cannot detect this bug since it does not use aliases when gen-
erating SELECT statements. Although Squirrel+oracle allows
alias during parsing, it does not use it for instantiation. If the
table has aliases, Squirrel+oracle will resolve the condition
to v1=v2, resulting in an error of “ambiguous column name”.
SQLRight adopts context-based instantiation, which avoids
the collision problem and successfully triggers this bug.

5.2 Comparison with Existing Tools

SQLancer contains three oracles, NoREC, TLP, and PQS. Both
NoREC and TLP just modify query statements to detect bugs,
and SQLRight can easily support them using our general APIs.
However, PQS relies on database content to construct state-
ments, and we consider supporting it in the future. Therefore,
we use NoREC and TLP to compare SQLRight, SQLancer, and
Squirrel+oracle. We launch five instances in each setting and
run them for 72 hours. Since SQLancer does not support NoREC
for MySQL, we skip this setting. Figure 5 (NoREC) and Figure 8
(TLP) in Appendix show the evaluation results.

Unique Logical Bugs. Based on Figure 5a b and Figure 8a
b, SQLRight reports the most 12 bugs across all settings, in-
cluding 6 SQLite bugs and 3 MySQL bugs using NoREC, and
2 SQLite bugs and 1 MySQL bug using TLP. Squirrel+oracle
merely found 1 bug, which is from SQLite using NoREC;
SQLancer did not find any logical bug. The empty outcome
from SQLancer could be due to its extensive use in testing
these DBMS systems [43–45]. The generation-based method
has reached its limit on finding more bugs in its supported
mutations. This demonstrates the necessity of bringing more
diverse mechanisms to detect logical bugs. SQLRight com-
bines code coverage, oracles, and query validity, and can de-
tect significantly more logical bugs than SQLite and MySQL.

9

0 4 8 12 16 20 24
0
1
2
3
4
5
6

Un
iq

ue
 B

ug

(a) bugs of SQLite (NoREC)
0 4 8 12 16 20 24

0

1

2

3

Un
iq

ue
 B

ug

(b) bugs of SQLite (TLP)
0 4 8 12 16 20 2420

25

30

35

40

Co
ve

ra
ge

 (k
)

(c) coverage of SQLite (NoREC)
0 4 8 12 16 20 2420

25

30

35

40

Co
ve

ra
ge

 (k
)

(d) coverage of SQLite (TLP)

SQLRight
SQLRightdrop
SQLRightrand
SQLRightsave

Figure 6: Contribution of code-coverage to DBMS fuzzing. We launch five instances for each tool and run each instance for 24 hours. a and
b show the number of unique SQLite bugs found by NoREC and TLP; c and d show the average number of SQLite edges using NoREC and TLP.

All tools fail to find any bug in PostgreSQL, indicating its
good code quality observed by previous works [43–45, 71].

Code Coverage. According to Figure 5c d e and Figure 8c
d e, SQLRight triggers noticeably higher code coverage than
others on three DBMS systems. Considering that SQLancer is
a generation-based tester and has a high validity rate, the ex-
tra coverage of SQLRight over SQLancer mainly comes from
the coverage-based guidance and full-featured per-DBMS
parsers. Although Squirrel+oracle also utilizes code cover-
age to guide testing, the accurate parser and context-based
instantiation help SQLRight outperform this state-of-the-art
coverage-based DBMS tester. For example, given the same
seed corpus, SQLRight can correctly parse more queries and
achieves higher code coverage even at the beginning. With
the higher coverage, SQLRight is able to find more bugs.

Query Validity. From Figure 5f g h and Figure 8f g h we can
find that SQLancer achieves the highest query validity, where
over 80% of all queries are valid for SQLite, 99% for MySQL,
and over 28% for PostgreSQL. Our tool SQLRight achieves
around 30%, 25%, 10% validity for three tested DBMSs. This
result is reasonable since SQLancer follows well-defined rules
to generate SQL statements, leading to more valid queries.
Nevertheless, SQLRight achieves significantly higher validity
than the Squirrel+oracle, which can hardly produce any use-
ful queries for oracles. This result confirms the necessity to
improve the validity of detecting logical bugs. Another ob-
servation is that SQLancer can keep a consistent high validity
rate for 72 hours. Mutation-based fuzzers, regardless of their
configurations, get a lower validity rate as time goes on. The
reason is that during fuzzing, some invalid queries trigger new
code coverage (e.g., error-handling code) and are added to
the queue. Mutating invalid queries will likely produce more
invalid ones, which turns the overall validity rate down. We
also measure the speed of generating valid queries and get
the same pattern, shown in Figure 5i j k and Figure 8i j k.
SQLancer can generate more valid queries than others, but its
efficiency varies over time.

Overall, SQLRight can find more logical bugs than
SQLancer and Squirrel+oracle. It also outperforms existing
tools in triggering more program code. Although SQLancer
produces high-quality queries, its lack of query diversity
makes it less effective in finding new logical bugs.

5.3 Contribution of Coverage Feedback

We compare SQLRight with three different feedback methods:
SQLRightdrop drops all generated queries and only mutates
seed inputs; SQLRightsave saves all generated queries (no mat-
ter whether they trigger new coverage or not) into the queue
and takes turns to mutate each query; SQLRightrand randomly
saves 10% of all generated queries to the queue. We per-
form the unit tests using SQLite with NoREC and TLP. For each
setting, we ran five instances in parallel for 24 hours. Fig-
ure 6 shows the average results of code coverage and logical
bugs. We also measure the contribution of queries in different
depths. Specifically, if a query is generated from seed inputs
through N mutations, we define its depth as N. Table 3 shows
the breakdown of code coverage regarding query depth.

Unique Logical Bugs. Figure 6a and b show the number of
detected bugs. For both NoREC and TLP, SQLRight reports the
most bugs, including 4 bugs using NoREC and 2 bugs using
TLP. Using NoREC, SQLRightdrop and SQLRightsave report 2
bugs, and SQLRightrand only detects 1. Without code cover-
age, SQLRight did not find any logical bug using TLP.

Code Coverage. According to Figure 6c and d, SQLRight
achieves the highest code coverage: 40.1K branches with
NoREC and 39.2K branches with TLP. SQLRightdrop detects
35.2K branches using NoREC and 35.0K branches using
TLP, which are 13.7% and 11.9% fewer than SQLRight.
SQLRightrand and SQLRightsave trigger even fewer branches
than SQLRightdrop. The result shows the benefit of coverage-
based guidance in generating more diverse queries.

Mutation Depth. Table 3 shows that SQLRight maintains
deeper mutation chains, where SQLRight can accumulate 21
mutations (column “Max Depth”) while others at most accu-
mulate 7 mutations. High-depth queries help SQLRight trigger
more code coverage. In NoREC, besides the seed-triggered code
(depth 0), 14.9% of new coverage is triggered by queries with
4-7 depth, and 17.0% is triggered by queries with 8 or more
mutations; in TLP, the contributions of high-depth queries
are 18.4% and 11.4%, respectively. SQLRightdrop only mu-
tates seed inputs to produce 1-depth queries. Although it gets
more coverage on depth 1, SQLRight finally wins thanks to
high-depth queries. SQLRightrand and SQLRightsave can accu-
mulate some mutations. However, without the coverage-based
guidance, the accumulation is slow and falls behind SQLRight.
Accumulated mutations also help detect more bugs. Column

10

0 4 8 12 16 20 24
0
1
2
3
4
5
6

Un
iq

ue
 B

ug

(a) SQLite logical bugs
0 4 8 12 16 20 24

0

1

2

3

4

Un
iq

ue
 B

ug

(b) MySQL logical bugs

SQLRight
SQLRight−deter
SQLRight−ctx−valid
SQLRight−db−par&ctx−valid
Squirrel+oracle

0 4 8 12 16 20 2425.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5

Co
ve

ra
ge

 (k
)

(c) SQLite code coverage
0 4 8 12 16 20 24100

120
140
160
180
200
220

Co
ve

ra
ge

 (k
)

(d) MySQL code coverage
0 4 8 12 16 20 24

0
20
40
60
80

100
120

Co
ve

ra
ge

 (k
)

(e) PostgreSQL code coverage

0 4 8 12 16 20 24
20
30
40
50
60
70

Qu
er

y
Va

lid
ity

 (%
)

(f) SQLite query validity
0 4 8 12 16 20 24

0

10

20

30

40

Qu
er

y
Va

lid
ity

 (%
)

(g) MySQL query validity
0 4 8 12 16 20 24

0
5

10
15
20
25
30

Qu
er

y
Va

lid
ity

 (%
)

(h) PostgreSQL query validity

0 4 8 12 16 20 24
105

106

va
lid

 st
at

em
en

ts
 p

er
 h

ou
r

(i) SQLite valid stmts / hr
0 4 8 12 16 20 24

100

101

102

103

104

105

va
lid

 st
at

em
en

ts
 p

er
 h

ou
r

(j) MySQL valid stmts / hr
0 4 8 12 16 20 24

100

101

102

103

104

105

va
lid

 st
at

em
en

ts
 p

er
 h

ou
r

(k) PostgreSQL valid stmts / hr

Figure 7: Unit Tests for SQLRight validity components (NoREC). a and b show the
number of unique logical bugs. c-k show code coverage, query validity and valid
statements over time for each instance. We run each instance for 24 hours, repeat 5
times and report the average results.

01 CREATE TABLE v0 (v1 TEXT);
02 INSERT INTO v0 VALUES ('0');
03 CREATE VIEW v2 (v3) AS SELECT v1 FROM v0
04 UNION ALL SELECT v1=10 FROM v0;
05 SELECT * FROM v2 NATURAL JOIN v2;
06 SELECT COUNT(*) FROM v2 NATURAL JOIN v2;
07 -- output of 1st SELECT: 0\n0\n0\n0
08 -- output of 2nd SELECT: 2

Listing 8: A false positive case related to view affin-
ity (SQLite). The affinity of v3 is indeterminate.

01 CREATE TABLE v0 (c1, c2);
02 INSERT INTO v0 VALUES (NULL, 10);
03 INSERT INTO v0 VALUES (NULL, NULL);
04 CREATE VIEW v3 (c4, c5) AS SELECT
05 MIN (c1), c2 FROM v0 WHERE c1 IS NULL;
06 SELECT COUNT(*) FROM v3 WHERE c5;
07 SELECT COUNT(c5) FROM v3;
08 -- output of 1st SELECT: 0
09 -- output of 2nd SELECT: 1

Listing 9: A false positive due to unspecified sub-
query ordering (SQLite).

01 SET SESSION sql_mode = sys.list_drop(
02 @@session.sql_mode ,'ONLY_FULL_GROUP_BY');
03 CREATE TABLE v0(c1 INT);
04 INSERT INTO v0 VALUES (1), (1), (3);
05 SELECT c1 FROM v0 GROUP BY NULL;
06 -- output: 1
07 SELECT c1 FROM v0 WHERE c1=1 GROUP BY NULL
08 UNION SELECT c1 FROM v0 WHERE NOT c1=1
09 GROUP BY NULL
10 UNION SELECT c1 FROM v0 WHERE c1=1 IS NULL
11 GROUP BY NULL;
12 -- output: 1\n3

Listing 10: A false positive case related to
GROUP BY NULL (MySQL). If a SELECT statement con-
tains GROUP BY NULL, MySQL would always return one
matching row.

“D” of Table 2 shows the depth of bug-triggering queries.
Among 18 logical bugs, only 3 can be triggered with 1 mu-
tation, while others require up to 7 mutations. Crashes and
assertion failures also require multiple mutations, demonstrat-
ing the consistent strength of coverage-based feedback.

Coverage-based guidance helps generate more diverse
queries and accumulate useful mutations, which helps dis-
cover more bugs than the no-feedback baselines.

5.4 Contribution of Validity
We evaluate validity-improvement techniques introduced
in §3.1, including cooperative mutation, DBMS-specific
parser, context-based instantiation, and non-determinism mit-
igation. SQLRight-deter disables the non-determinism miti-
gation techniques. SQLRight-ctx-valid disables the context-
based instantiation and uses the dependency graph-based
validation from Squirrel. Based on SQLRight-ctx-valid,
SQLRight-db-par&ctx-valid further reuses the SQL parser of
Squirrel. Squirrel+oracle does not adopt any validity-
improvement techniques. We conduct unit tests on three
DBMSs with two oracles. We evaluate each setup with five
instances and run them for 24 hours. Figure 7 (NoREC) and
Figure 9 (TLP) in Appendix show the results.
Unique Logical Bugs. SQLRight triggers the most bugs,

shown in Figure 7a b and Figure 9a b, including 4 bugs
in SQLite using NoREC, 2 bugs in SQLite using TLP, 2
bugs in MySQL using NoREC, and 1 bug in MySQL using TLP.
SQLRight-db-par&ctx-valid and Squirrel+oracle merely find 1
bug using NoREC. Other settings find no bugs.

Code Coverage. According to Figure 7c d e and Figure 9c d
e, SQLRight dominates the code coverage number across all
unit tests. The results show that the validity techniques help
generate more diverse queries and explore more code. Among
all validity-improvement techniques, the per-DBMS parser
contributes the most to code coverage. Because the parser
understands different SQL dialects, it can explore custom fea-
tures specific to each DBMS. These features are not reachable
through Squirrel, leading to the significant coverage gap
between SQLRight-ctx-valid and SQLRight-db-par&ctx-valid.

Query Validity. The per-DBMS parser again plays the most
important role in query validity. When testing PostgreSQL
and MySQL, parsers from Squirrel cannot generate any useful
queries. First, Squirrel parsers do not support custom func-
tions in SELECT, including function COUNT, which is necessary
to generate NoREC-compatible queries. Second, these parsers
do not support UNION ALL, which is the key component to
implement compatible queries for TLP. Among three DBMSs,
SQLRight has the lowest validity for PostgreSQL. Since

11

DBMS Oracle FPs Main Reason
SQLite NoREC SQLRight: 19 VIEW affinity, subquery ordering

SQLRight-deter: 42 randomblob and julianday() func
SQLite TLP SQLRight: 8 subquery ordering

SQLRight-deter: 53 randomblob func
MySQL NoREC SQLRight: 0 -

SQLRight-deter: 18 rand func, auto insert TRIGGERs
MySQL TLP SQLRight: 10 GROUP BY NULL

SQLRight-deter: 64 rand func, auto insert TRIGGERs

Table 4: False Positives by Non-deterministic Behaviors.

PostgreSQL enforces the most rigorous syntax and seman-
tic rules, it is hard to generate valid SQL queries [43–45, 71].
False Positives due to Non-determinism. Table 4 shows the
false positive numbers after bisecting, and Figure 7 and Fig-
ure 9 present the code coverage and validity of SQLRight-deter.
SQLRight-deter shares similar code coverage and validity with
SQLRight, but it produces 95 false positives in SQLite and 82
false positives in MySQL. Most false positives are due to ran-
dom functions, like randomblob, julianday, and so on. By
disabling all non-deterministic behaviors, SQLRight still in-
troduces a small number of false positives. They are mainly
due to the special semantics in each DBMS, which we will
provide more details in §6. We do not observe false positives
from PostgreSQL, even with SQLRight-deter. The reason is
that the seed corpus contains no random behaviors.

The validity-oriented optimizations in SQLRight can help
generate higher validity queries, reduce false positives, and
ultimately help discover more bugs.

6 Discussion

In this section, We first discuss the common reasons for false
positives (FP) and invalid queries of SQLRight. Then, we
present the importance of seed inputs for finding logical bugs.
FP1: View Affinity in SQLite. We find several false posi-
tives related to the data affinity issue in View of SQLite. List-
ing 8 presents one example that triggers the false alarm. We
expect that the number of rows returned by line 5 is the same
as the result of line 6 (likely, 4). However, the first SELECT re-
turns four rows while the second returns 2. SQLite developers
explain that this inconsistency is due to the undefined affinity.
Specifically, SQLite assigns each column an affinity (similar
to data type) and uses different comparison algorithms for
each affinity. In this example, the affinity of v2.v3 is indeter-
minate due to different affinities from two sources: SELECT
v1 FROM v0 returns a column with affinity TEXT, while SELECT
v1=10 FROM v0 returns a column with affinity NONE. Therefore,
in the last two SELECTs, SQLite is free to choose any affinity
to compare v3. In line 5, SQLite uses affinity TEXT and re-
turns four rows, while in line 6, SQLite chooses affinity BLOB
and only finds two matched rows. We find that the affinity
issue is commonly reported by third-party tools as “bugs”,
including SQLancer [30]. Although SQLite documents have
clearly explained this problem [50], we suspect that DBMS
administrators may still miss it and create ambiguous queries.

FP2: Ordering in SQLite Subqueries. Listing 9 shows one
false positive due to the undefined ordering in subqueries.
This query first creates table v0 with columns c1 and c2 and
inserts rows (NULL,10) and (NULL,NULL). Then, it creates
view v3 to access particular rows in v0. If a row in v0 satisfies
condition c1 IS NULL, the minimum c1will be assigned to c4,
and c2 will be assigned to c5. Both SELECT statements count
c5, but they return different results. This problem is due to the
undefined ordering in SQLite subqueries. The VIEW creation
statement uses an aggregate function MIN in the subquery. To
keep the row number consistent, SQLite will return one row
of c2 and assign it to c5. However, which row of c2 to return
is not defined, i.e., it can be either 10 or NULL since both rows
in v0 satisfy the condition c1 IS NULL. If NULL is returned,
the counting result will be 0; if 10 is used, the result will be 1.

FP3: GROUP BY NULL in MySQL. Listing 10 shows
a common false positive in MySQL. This false positive is
reproducible when we turn off ONLY_FULL_GROUP_BY from
sql_mode. The sample query first creates table v0 and inserts
rows (1),(1),(3). It then uses oracle TLP to check the rows
of v0. The returned results from two SELECTs are different,
triggering TLP to report a potential bug. The difference is
due to GROUP BY NULL, which forces SELECT to return one
row regardless of really matched rows. The first SELECT has
one SELECT clause and thus returns one row, while the sec-
ond SELECT has three SELECT clauses and returns two rows.
This issue can also be triggered if an SQL expression in the
GROUP BY clause returns NULL. Therefore, it is easy to trigger
this false positive unless we manually exclude expressions
from GROUP BY. Fortunately, due to the small number of false
positives, we can easily identify and ignore such false alarms.

Examples for invalid queries. Although SQLRight uses
several techniques to improve validity, it cannot guarantee
100% correctness. Listing 11 shows a set of invalid queries
SQLRight generates for PostgreSQL. The queries first create
a table with the custom type circle, insert one circle value
and then try to print out the table after reordering its rows. The
reordering operation will fail since PostgreSQL does not have
a compare method for circle. To fix this program, SQLRight
must understand PostgreSQL geometric types and their re-
lated functions. It should generate queries to compare the
radius, diameter, area, or other geometric characteristics from
circle. The last SELECT shows one of correct queries. Due
to the large number of custom data types and their related
functions, we consider supporting them in the future.

Importance of Seed Corpus. During the evaluation, we no-
tice that seed inputs are important for SQLRight to find logical
bugs. SQLRight relies on random mutations to generate new
queries, while the seed inputs provide all elements for muta-
tion. If the seed inputs cover a broad range of functionalities,
SQLRight can generate more diverse testing queries, and thus
can test more aspects of DBMSs. To guarantee the quality
of seed inputs, we gather queries from various unit tests of

12

01 CREATE TABLE v0 (c1 circle);
02 -- circle formatting '(x, y), r'
03 INSERT INTO v0 VALUES ('(1, 2), 3');
04 SELECT v0.c1 FROM v0 ORDER BY c1;
05 -- outputs: ERROR: Could not identify an ordering
06 -- operator for type circle at character 33
07 SELECT v0.c1 FROM v0 ORDER BY area(c1);
08 -- outputs: c1 = "<(1,2),3>"

Listing 11: Invalid SQL queries for PostgreSQL, generated by
SQLRight. PostgreSQL defines ‘circle’ as a build-in data type. How-
ever, ‘circle’ type doesn’t support compare operators by default.

each tested DBMS. For example, we collected over 160 seed
inputs for SQLite from the TCL Tests script, covering various
SQLite functions such as WHERE, ROWID and IN. TCL Test is
the built-in test tool for SQLite. Its code is available in the
SQLite GitHub repository, and it contains 1,272 test files and
more than 46,000 unique test cases. These TCL Test scripts
not only contain previously discovered bugs but also cover
many SQLite-specific functionalities such as ROWID. We plan
to introduce more high-quality and diverse seed inputs to
SQLRight in our future work.

7 Related Work

In this section, we discuss the recent testing approaches that
are related to SQLRight, focusing on DBMS testing.
Detecting Logic Bugs in DBMSs. Differential testing [29]
is commonly used to detect logical bugs from DBMS sys-
tems [43–45, 49, 61, 68]. One direction is to run one query
with different DBMS systems [16, 49, 52] and check the re-
sult consistency. Another direction is to run one query with
different settings of one DBMS, like versions or optimiza-
tion levels [67, 68]. SQLancer proposes the third direction,
which constructs functionally equivalent queries to test one
DBMS [43–45]. This method requires a deep understanding
of SQL and DBMS [30]. SQLRight adopts the third method to
generate equivalent queries. It also uses random mutation to
diversify the query and relies on coverage-based guidance to
help explore the program states. Our evaluation demonstrates
the benefits of code coverage for finding logical bugs.
Detecting Performance Bugs in DBMS. Performance is an
important metric of DBMS systems, and many test efforts aim
to pinpoint the performance bottleneck [25]. BmPad [40] esti-
mates execution times for a set of queries and checks whether
real execution times are expected. AMOEBA [26] constructs
function-equivalent queries and checks whether a DBMS can
handle them in similar times. Apollo detects performance
regression bugs, where the new version runs slower than the
old one [21]. A common challenge is to determine whether
a performance downgrade is a bug, or just a design choice.
As each DBMS supports many features, developers tend to
optimize the system for commonly used queries. Such opti-
mization could slow down rarely used statements. Therefore,
it requires extra efforts from DBMS developers to inspect and
confirm performance bugs. SQLRight focuses on logical bugs,

which usually have a strict policy on result consistency. Most
reported bugs have been fixed immediately after our reports.
Detecting Crash Bugs in DBMS. Most testing efforts have
been spent on detecting program crashes through two meth-
ods, either generation-based method or mutation-based. The
generation-based method takes well-defined rules to synthe-
size valid DBMS queries [33, 58, 59]. Since generating a
completely valid DBMS query is NP-complete [29], most
generators focus on syntax validity and take practical ways
to improve semantic correctness. SQLsmith [58] is highly
customized and effective for PostgreSQL [71]. It generates
constrained queries based on the understanding of the un-
derlying database schema. Several works reduce the query
generation problem to the satisfying constraints [1, 31] and
use SAT solvers to provide valid queries [2]. Differently,
Chandra et al. [7] propose to generate a proper database to
boost the DBMS testing. SQLRight is different from these
mutators in two ways. First, it does not require any predefined
database, but creates one for each query. Second, it utilizes
code coverage to highlight promising queries for testing.

Several fuzzers have shown their capability to test DBMS
systems [3, 4, 8, 9, 24, 27, 36, 53, 69, 70]. Grimoire utilizes
grammar-like combinations to synthesize highly structured
inputs [6]. Bati et al. [5] proposed an engine that inserts
or removes grammar components from existing SQL state-
ments. However, due to the strict grammar and semantic re-
quirements, most tools cannot explore deep logic of DBMS,
like query planning and execution. The most recent work
Squirrel translates SQL strings to an IR-based representa-
tion, and relies on the IR type to increase the validity of query
generation [71]. SQLRight adopts the type-guided mutation
of Squirrel, and takes one step further to cooperate with
DBMS oracles to produce high-quality, oracle-compatible
SQL statements. More importantly, SQLRight focuses on de-
tecting logical bugs other than crashes and assertion failures.

8 Conclusion

We design the first tool, SQLRight, that combines code cov-
erage, validity-oriented mutations and oracles to find logical
bugs for DBMS systems. SQLRight contains a set of gen-
eral APIs so that users can easily use existing fuzzers to test
DBMSs and develop new oracles. We also improve the query
validity to boost the fuzzing efficacy. Evaluations confirm that
coverage-based guidance and query validity help SQLRight
find more bugs than existing tools. Overall, SQLRight detects
18 logical bugs from SQLite, PostgreSQL and MySQL. Devel-
opers have confirmed all reported bugs and fixed 14 of them.

Acknowledgment

We thank the anonymous reviewers and development teams
of SQLite and MySQL for their helpful feedback. This re-

13

search was supported, in part, by a subcontract of the DARPA
AIMEE under Agreement No. HR00112090034, and an IST
seed grant from Pennsylvania State University.

References

[1] Shadi Abdul Khalek and Sarfraz Khurshid. Automated SQL Query
Generation for Systematic Testing of Database Engines. In Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2010.

[2] Alloy. Alloy - Documentation of Alloy SAT solver. https://
alloytools.org/documentation.html. (visited in June 2021).

[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. NAUTILUS:
Fishing for Deep Bugs with Grammars. In Proceedings of the 26th
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2019.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gaw-
lik, and Thorsten Holz. REDQUEEN: Fuzzing with Input-to-State
Correspondence. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, 2019.

[5] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna.
A Genetic Approach for Random Testing of Database Systems. In
Proceedings of the 33rd International Conference on Very Large Data
Bases (VLDB), Vienna, Austria, 2007.

[6] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi,
Sergej Schumilo, Simon Wörner, and Thorsten Holz. GRIMOIRE:
Synthesizing Structure while Fuzzing. In Proceedings of the 28th
USENIX Security Symposium (USENIX Security), Santa Clara, CA,
2019.

[7] Bikash Chandra, Bhupesh Chawda, Biplab Kar, K. V. Maheshwara
Reddy, Shetal Shah, and S. Sudarshan. Data Generation for Testing
and Grading SQL Queries. The VLDB Journal, 24(6), Aug 2015.

[8] Peng Chen and Hao Chen. Angora: Efficient Fuzzing By Principled
Search. In Proceedings of the 39th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, 2018.

[9] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong
Zhang, Long Lu, et al. Savior: Towards bug-driven hybrid testing.
In Proceedings of the 41st IEEE Symposium on Security and Privacy
(Oakland), Virtual, 2020.

[10] Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang,
Dinghao Wu, and Wenke Lee. One Engine to Fuzz ’em All: Generic
Language Processor Testing with Semantic Validation. In Proceed-
ings of the 42nd IEEE Symposium on Security and Privacy (Oakland),
Virtual, May 2021.

[11] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. NTFUZZ:
Enabling Type-Aware Kernel Fuzzing on Windows with Static Binary
Analysis. In Proceedings of the 42nd IEEE Symposium on Security
and Privacy (Oakland), Virtual, May 2021.

[12] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng,
Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang,
Adam Doupé, et al. Favocado: Fuzzing the Binding Code of JavaScript
Engines Using Semantically Correct Test Cases. In Proceedings of
the 28th Annual Network and Distributed System Security Symposium
(NDSS), Virtual, 2020.

[13] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni.
Fuzzing Binaries for Memory Safety Errors with QASan. In Pro-
ceedings of 2020 IEEE Secure Development (SecDev), Virtual, 2020.

[14] Free Software Foundation. Gnu bison, 2014. https://www.gnu.
org/software/bison/.

[15] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. CollAFL: Path Sensitive Fuzzing. In Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, 2018.

[16] Bogdan Ghit, Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz.
SparkFuzz: Searching Correctness Regressions in Modern Query En-
gines. In Proceedings of the Workshop on Testing Database Systems
(DBTest), Portland, Oregon, 2020.

[17] Google. ClusterFuzz. https://google.github.io/clusterfuzz.
(visited in June, 2021).

[18] Google. Honggfuzz. https://google.github.io/honggfuzz/.
(visited in June 2021).

[19] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript
Engines. In Proceedings of the 26th Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2019.

[20] Bo Jiang, Ye Liu, and W. K. Chan. ContractFuzzer: Fuzzing Smart
Contracts for Vulnerability Detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing (ASE), 2018.

[21] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang.
APOLLO: Automatic Detection and Diagnosis of Performance Regres-
sions in Database Systems. In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB), Tokyo, Japan, 2020.

[22] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. HFL: Hybrid Fuzzing on the Linux
Kernel. In Proceedings of the 27th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, 2020.

[23] Doug Laney. 3-D Data Management: Controlling Data Volume, Veloc-
ity and Variety. Technical report, February 2001.

[24] Caroline Lemieux and Koushik Sen. Fairfuzz: A Targeted Mutation
Strategy for Increasing Greybox Fuzz Testing Coverage. In Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE), 2018.

[25] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. QTune: A Query-
Aware Database Tuning System with Deep Reinforcement Learning.
Proceedings of the VLDB Endowment, 12(12):2118–2130, 2019.

[26] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. Automated
Performance Bug Detection in Database Systems. arXiv preprint
arXiv:2105.10016, 2021.

[27] LLVM. LibFuzzer - A Library For Coverage-guided Fuzz Testing.
http://llvm.org/docs/LibFuzzer.html. (visited in June 2021).

[28] LLVM. Undefined Behavior Sanitizer (UBSan). https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html. (visted in
June 2021).

[29] Eric Lo, Carsten Binnig, Donald Kossmann, M. Tamer Özsu, and Wing-
Kai Hon. A Framework for Testing DBMS Features. The VLDB
Journal, 19(2):203–230, April 2010.

[30] Manuel Rigger. SQLancer. https://github.com/sqlancer/
sqlancer. (visited in June 2021).

[31] Michaël Marcozzi, Wim Vanhoof, and Jean-Luc Hainaut. Test Input
Generation for Database Programs Using Relational Constraints. In
Proceedings of the Fifth International Workshop on Testing Database
Systems (DBTest), Scottsdale, Arizona, 2012.

[32] Barton P. Miller, Louis Fredriksen, and Bryan So. An Empirical Study
of the Reliability of UNIX Utilities. Communications of the ACM,
33(12):32–44, December 1990.

[33] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating
Targeted Queries for Database Testing. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data
(SIGMOD), New York, NY, USA, 2008.

14

https://alloytools.org/documentation.html
https://alloytools.org/documentation.html
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://google.github.io/clusterfuzz
https://google.github.io/honggfuzz/
http://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer

[34] MySQL. MySQL Customers. https://www.mysql.com/
customers/. (visited in Jan 2022).

[35] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran
Minh. sfuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts.
In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), 2020.

[36] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and
Yves Le Traon. Semantic fuzzing with zest. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2019.

[37] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Op-
timizing OS Fuzzer Seed Selection with Trace Distillation. In Pro-
ceedings of the 27th USENIX Security Symposium (USENIX Security),
Baltimore, MD, 2018.

[38] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim.
Fuzzing JavaScript Engines with Aspect-preserving Mutation. In
Proceedings of the 41st IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, 2020.

[39] PostgreSQL. Aboug PostgreSQL. https://www.postgresql.org/
about/. (visited in Jan 2022).

[40] Kim-Thomas Rehmann, Changyun Seo, Dongwon Hwang, Binh
Truong, Alexander Böhm, and Donghun Lee. Performance Monitoring
in SAP HANA’s Continuous Integration Process. ACM SIGMETRICS
Performance Evaluation Review, 43:43–52, 02 2016.

[41] Richard Hipp. What is Fossil? https://www2.fossil-scm.org/
home/doc/trunk/www/index.wiki. (visited on Jan 2021).

[42] Manuel Rigger. Bugs Found in Database Management Systems. https:
//www.manuelrigger.at/dbms-bugs/. (visited in June 2021).

[43] Manuel Rigger and Zhendong Su. Detecting Optimization Bugs in
Database Engines via Non-optimizing Reference Engine Construc-
tion. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2020.

[44] Manuel Rigger and Zhendong Su. Finding Bugs in Database Systems
via Query Partitioning. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–30, 2020.

[45] Manuel Rigger and Zhendong Su. Testing Database Engines via Pivoted
Query Synthesis. In Proceedings of the 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Virtual, 2020.

[46] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
Proceedings of the 2012 USENIX Annual Technical Conference (ATC),
Boston, MA, 2012.

[47] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the workshop on binary
instrumentation and applications, pages 62–71, 2009.

[48] Kostya Serebryany. Sanitize, Fuzz, and Harden Your C++ Code. San
Francisco, CA, 2016. USENIX Association.

[49] Donald R Slutz. Massive Stochastic Testing of SQL. In VLDB, vol-
ume 98, pages 618–622. Citeseer, 1998.

[50] SQLite. Datatypes In SQLite. https://www.sqlite.org/
datatype3.html. (visited in Jan 2021).

[51] SQLite. Most Widely Deployed and Used Database Engine. https:
//www.sqlite.org/mostdeployed.html. (visited in June 2021).

[52] SQLite Team. sqllogictest Documentation. https://www.sqlite.
org/sqllogictest/doc/trunk/about.wiki. (visited in June
2021).

[53] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting Fuzzing Through
Selective Symbolic Execution. In Proceedings of the 23rd Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego,
CA, 2016.

[54] Michael Stonebraker, Sam Madden, and Pradeep Dubey. Intel "Big
Data" Science and Technology Center Vision and Execution Plan. ACM
SIGMOD Record, 42(1):44–49, 2013.

[55] Well-known Users of SQLite. https://www.sqlite.org/famous.
html. (visited in June 2021).

[56] MySQL Customers. https://www.mysql.com/customers/. (vis-
ited in June 2021).

[57] PostgreSQL Clients. https://wiki.postgresql.org/wiki/
PostgreSQL_Clients. (visited in June 2021).

[58] SQLSmith. https://github.com/anse1/sqlsmith. (visited in
June 2021).

[59] J. Wang, P. Zhang, L. Zhang, H. Zhu, and X. Ye. A Model-based
Fuzzing Approach for DBMS. In Proceedings of the 8th International
Conference on Communications and Networking in China (CHINA-
COM), Aug 2013.

[60] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou,
Huafeng Zhang, and Yu Jiang. Industry Practice of Coverage-Guided
Enterprise-Level DBMS Fuzzing. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), 2021.

[61] Gary Wassermann and Zhendong Su. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), New York, NY, 2007.

[62] Valentin Wüstholz and Maria Christakis. Harvey: A Greybox Fuzzer
for Smart Contracts. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE), 2020.

[63] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data Race Fuzzing for Kernel File Systems. In Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, 2020.

[64] Peng Xu, Yanhao Wang, Hong Hu, and Purui Su. Cooper: Testing
the Binding Code of Scripting Languages with Cooperative Mutation.
In Proceedings of the 29th Annual Network and Distributed System
Security Symposium (NDSS 2022), San Diego, CA, apr 2022.

[65] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing File Systems via Two-Dimensional Input Space
Exploration. In Proceedings of the 40th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2019.

[66] Wen Xu, Soyeon Park, and Taesoo Kim. FREEDOM: Engineering a
State-of-the-Art DOM Fuzzer. In Proceedings of the 27th ACM Con-
ference on Computer and Communications Security (CCS), Orlando,
FL, November 2020.

[67] Khaled Yagoub, Peter Belknap, Benoit Dageville, Karl Dias, Shantanu
Joshi, and Hailing Yu. Oracle’s SQL Performance Analyzer. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering,
31(1), 2008.

[68] Jiaqi Yan, Qiuye Jin, Shrainik Jain, Stratis D. Viglas, and Allison Lee.
Snowtrail: Testing with Production Queries on a Cloud Database. In
Proceedings of the Workshop on Testing Database Systems (DBTest),
New York, NY, USA, 2018.

[69] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security), Baltimore, MD, August 2018.

[70] Michal Zalewski. American Fuzzy Lop (2.52b). http://lcamtuf.
coredump.cx/afl. (visited in June 2021).

[71] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee,
and Dinghao Wu. SQUIRREL: Testing Database Management Systems
with Language Validity and Coverage Feedback. In Proceedings of
the 27th ACM Conference on Computer and Communications Security
(CCS), Orlando, USA, November 2020.

15

https://www.mysql.com/customers/
https://www.mysql.com/customers/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www2.fossil-scm.org/home/doc/trunk/www/index.wiki
https://www2.fossil-scm.org/home/doc/trunk/www/index.wiki
https://www.manuelrigger.at/dbms-bugs/
https://www.manuelrigger.at/dbms-bugs/
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki
https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki
https://www.sqlite.org/famous.html
https://www.sqlite.org/famous.html
https://www.mysql.com/customers/
https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://github.com/anse1/sqlsmith
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

A More Case Studies on Detected Bugs

01 CREATE TABLE v0 (v1 PRIMARY KEY, v2 , v3);
02 INSERT INTO v0 VALUES ('111', '222', '333');
03 CREATE TABLE v4 (v5 PRIMARY KEY);
04 INSERT INTO v4 VALUES ('0');
05 SELECT * FROM v4 JOIN v0 ON likely(v3=v1) AND v3='111';
06 -- output: 0|111|222|333
07 -- expect: (empty)

Listing 12: A logical bug of SQLite that leaks data due to incor-
rect constant propagation. The SELECT statement should not return
any rows, but the buggy SQLite returns one row.

Data Leakage Bug. SQL statements in Listing 12 trigger
logical bug 2 in Table 2, which returns extra rows. The
first two statements create table v0 and inserts one row
‘111’,‘222’,‘333’, while the following two statements cre-
ate table v4 with one row ‘0’. The SELECT statement joins
rows if they satisfy the conditions v3=v1 and v3=‘111’. Func-
tion likely() provides a hint about the comparison result,
and by design will not change the results. Since v0 has no
rows satisfying the conditions, SQLite should return noth-
ing. However, due to the incorrect constant propagation, the
conditions are incorrectly optimized to v1=‘111’, and SQLite
returns row 0|111|222|333. From the security perspective,
attackers may exploit this bug to steal information, if they can
trigger the DBMS to conduct queries similar to Listing 12. In
a worse scenario, if a system relies on such SELECT for authen-
tication, e.g., searching for matched user name and password,
attackers may get system access without valid credentials. Our
bisector locates the buggy commit introduced in July 2018,
which means the vulnerability has been there for several years.
SQLRight can detect this bug using NoREC and TLP within six
hours. Considering the simplicity of these queries, real-world
uses of SQLite may have triggered this bug.

01 CREATE TABLE v0 (v1 INTEGER PRIMARY KEY) WITHOUT ROWID;
02 INSERT INTO v0 VALUES (10) ;
03 ALTER TABLE v0 ADD v2 INT;
04 SELECT * FROM v0 WHERE v1=20 OR (v1=10 AND v2=10);
05 -- output: 10|NULL
06 -- expect: (empty)

Listing 13: A logical bug of SQLite that leaks data due to incor-
rect primary key. We expect the SELECT statement returns no rows,
but the buggy SQLite provides one extra row.

Data Leakage due to Primary Key. Listing 13 shows
queries that trigger logical bug 8 in Table 2, which returns
extra rows. The first statement creates table v0 with one col-
umn v1, where v1 has the INTEGER type and is the primary key.
The second statement inserts one row 10 into this table. The
third statement adds another column v2 of type INT into v0.
By default, all rows in v0 will have a NULL value in column v2.
The last SELECT statement searches in table v0 for rows where
v1=20 or both v1 and v2 have the value of 10. Since table v0
only has one row 10|NULL, we expect the DBMS returns no
rows. However, it returns 10|NULL, even though the content
does not satisfy the conditions in WHERE.

SQLRight can detect this bug by oracle TLP and oracle
Rowid. Regardless of the oracle, to trigger the bug the query
should create a WITHOUT ROWID table. In an ordinary ta-
ble (a table created without WITHOUT ROWID), SQLite cre-
ates a hidden column rowid and uses it as the real primary
key. The PRIMARY KEY column is merely implemented as a
UNIQUE INDEX that redirects the search back to rowid. How-
ever, in a WITHOUT ROWID table the extra column rowid is
disabled. SQLite implements the PRIMARY KEY columns as
the unique id of each row, and directly uses them to narrow
down the search. Without the extra rowid column, SQLite can
improve the speed of fetching data and reduce the storage size.
In the first statement of Listing 13, v0 is a WITHOUT ROWID ta-
ble. SQLite treated column v1 as the real primary key and
stored it in a sorted manner. In the third statement, SQLite
adds column v2 and stores it without sorting. The unsorted v2
should not be used to narrow the search. However, the query
planner of SQLite does not take this exception into account
and uses v2 to traverse the table. Therefore, SQLite returns
the extra row to the query. We reported the bug to SQLite
developers, and they fix it by not considering the unsorted
column when constructing the query plan.

01 CREATE TABLE v0 (v2 INT, v1 INT);
02 INSERT INTO v0 VALUES (10, 10);
03 CREATE INDEX v4 ON v0 (v1) WHERE v2>NULL;
04 SELECT * FROM v0 WHERE v2 IS NOT NULL;
05 -- output: (empty)
06 -- expect: 10|10

Listing 14: A logical bug of SQLite due to futile index. The
SELECT statement should return one row, but SQLite returns nothing
as it incorrectly uses the index v4.

Missing Data due to Futile Index. Listing 14 shows the
query set that triggers logical bug 11 in Table 2, which drops
expected rows from the result. The first two statements of this
query create table v0 and insert one row 10|10. The third state-
ment creates a partial index v4 on column v1 when v2>NULL.
Since the comparison with NULL always returns NULL, no rows
are added into index v4. The last statement searches in table
v0 and aims to find rows where v2 is not NULL. Since the
table only has one row 10|10, we expect the query returns
one row. However, the buggy version of SQLite does not re-
turn any rows. The reason is that SQLite confuses >NULL with
IS NOT NULL, and thus uses the empty index v4 to handle the
SELECT statement. SQLRight can detect this bug using oracle
NoREC and oracle Index. After our report, the developers have
fixed this bug by resolving the confusion.

16

0
12

24
36

48
60

72
01234 Unique Bug

(a
)S
Q
L
i
t
e

lo
gi

ca
lb

ug
s

0
12

24
36

48
60

72
01234 Unique Bug

(b
)M
y
S
Q
L

lo
gc

ia
lb

ug
s

0
12

24
36

48
60

72
2025303540 Coverage (k)

SQ
LR

ig
ht

Sq
ui

rre
l +

or
ac
le

SQ

La
nc

er

0
12

24
36

48
60

72
2025303540 Coverage (k)

(c
)S
Q
L
i
t
e

co
de

co
ve

ra
ge

0
12

24
36

48
60

72
025507510
0

12
5

15
0

17
5

20
0

Coverage (k)

(d
)M
y
S
Q
L

co
de

co
ve

ra
ge

0
12

24
36

48
60

72
02040608010
0

12
0

14
0

Coverage (k) (e
)P
o
s
t
g
r
e
S
Q
L

co
de

co
ve

ra
ge

0
12

24
36

48
60

72

304050607080 Query Validity (%)

(f
)S
Q
L
i
t
e

qu
er

y
va

lid
ity

0
12

24
36

48
60

72
02040608010
0

Query Validity (%)

(g
)M
y
S
Q
L

qu
er

y
va

lid
ity

0
12

24
36

48
60

72
010203040 Query Validity (%) (h
)P
o
s
t
g
r
e
S
Q
L

qu
er

y
va

lid
ity

0
12

24
36

48
60

72

10
6

10
7

Valid Queries per Hour

(i)
S
Q
L
i
t
e

va
lid

st
m

ts
/h

r
0

12
24

36
48

60
72

10
1

10
3

10
5

10
7

Valid Queries per Hour

(j
)M
y
S
Q
L

va
lid

st
m

ts
/h

r
0

12
24

36
48

60
72

10
1

10
3

10
5

10
7

10
9

Valid Queries per Hour (k
)P
o
s
t
g
r
e
S
Q
L

va
lid

st
m

ts
/h

r

Fi
gu

re
8:

C
om

pa
ri

so
n

be
tw

ee
n

di
ff

er
en

tt
oo

ls
(T
L
P
).

a-
k

sh
ow

th
e

nu
m

be
r

of
un

iq
ue

lo
gi

ca
lb

ug
s,

co
de

co
ve

ra
ge

,q
ue

ry
va

lid
ity

an
d

va
lid

st
at

em
en

ts
ov

er
tim

e
fo

re
ac

h
fu

zz
in

g
in

st
an

ce
.W

e
ru

n
ea

ch
in

st
an

ce
fo

r7
2

ho
ur

s,
re

pe
at

fo
rfi

ve
tim

es
an

d
re

po
rt

th
e

av
er

ag
e.

0
4

8
12

16
20

24
0123 Unique Bug

(a
)S
Q
L
i
t
e

lo
gi

ca
lb

ug
s

0
4

8
12

16
20

24
01234 Unique Bug

(b
)M
y
S
Q
L

lo
gi

ca
lb

ug
s

SQ
LR

ig
ht

SQ
LR

ig
ht

−d
et
er

SQ
LR

ig
ht

−c
tx
−
va

lid

SQ
LR

ig
ht

−d
b−

pa
r&

ct
x−

va
lid

Sq
ui
rre

l +
or
ac
le

0
4

8
12

16
20

24
25

.0
27

.5
30

.0
32

.5
35

.0
37

.5
40

.0
42

.5

Coverage (k)

(c
)S
Q
L
i
t
e

co
de

co
ve

ra
ge

0
4

8
12

16
20

24
10

0
12

0
14

0
16

0
18

0
20

0
22

0

Coverage (k)

(d
)M
y
S
Q
L

co
de

co
ve

ra
ge

0
4

8
12

16
20

24
02040608010
0

12
0

14
0

Coverage (k) (e
)P
o
s
t
g
r
e
S
Q
L

co
de

co
ve

ra
ge

0
4

8
12

16
20

24
203040506070 Query Validity (%)

(f
)S
Q
L
i
t
e

qu
er

y
va

lid
ity

0
4

8
12

16
20

24
010203040 Query Validity (%)

(g
)M
y
S
Q
L

qu
er

y
va

lid
ity

0
4

8
12

16
20

24
051015202530 Query Validity (%) (h
)P
o
s
t
g
r
e
S
Q
L

qu
er

y
va

lid
ity

0
4

8
12

16
20

24

10
5

10
6

Coverage (k)

(i)
S
Q
L
i
t
e

va
lid

st
m

ts
/h

r
0

4
8

12
16

20
24

10
0

10
1

10
2

10
3

10
4

10
5

valid statements per hour

(j
)M
y
S
Q
L

va
lid

st
m

ts
/h

r
0

4
8

12
16

20
24

10
0

10
1

10
2

10
3

10
4

10
5

valid statements per hour (k
)P
o
s
t
g
r
e
S
Q
L

va
lid

st
m

ts
/h

r

Fi
gu

re
9:

U
ni

tT
es

ts
fo

r
S
Q
L
R
i
g
h
t

co
m

po
ne

nt
s

(T
L
P
).

a-
k

sh
ow

th
e

nu
m

be
r

of
un

iq
ue

lo
gi

ca
lb

ug
s,

co
de

co
ve

ra
ge

,q
ue

ry
va

lid
ity

an
d

va
lid

st
at

em
en

ts
ov

er
tim

e
fo

re
ac

h
fu

zz
in

g
in

st
an

ce
.W

e
ru

n
ea

ch
in

st
an

ce
fo

r2
4

ho
ur

s,
re

pe
at

fo
rfi

ve
tim

es
an

d
re

po
rt

th
e

av
er

ag
e.

17

B Generating the Motivating Example

01 CREATE TABLE person (
02 pid INTEGER PRIMARY KEY,
03 tid INTEGER REFERENCES team,
04 leader BOOLEAN,
05);
06 CREATE UNIQUE INDEX leader ON person(tid) WHERE leader;
07 SELECT pid FROM person WHERE leader AND tid=1;

Listing 15: Original queries that lead to Listing 1. We collected
this seed input from SQLite website about unique partial indexes.

To prepare fuzzing, we collect the seed input from the
SQLite website about unique partial indexes, shown in List-
ing 15. Together with other seed inputs, we launch SQLRight
to test the SQLite. During the initialization, SQLRight scans
all seed inputs. When reaching Listing 15, it extracts the
SELECT statement at line 7 and saves it to the select queue;
other statements are stored in the normal queue. After that,
SQLRight starts to mutate existing queries to get new ones.

When lines 1-6 are selected for mutation, SQLRight
first invokes the preprocess() function of oracle Index.
preprocess() determines that this query set is compatible,
and it removes line 6 to avoid false alarms. Then, the muta-
tion engine randomly modifies the remaining components,
i.e., CREATE TABLE, to generate new statements. By some
chance, it deletes column tid and column leader from ta-
ble person, and inserts an INSERT statement that adds three
values into the table. Meanwhile, SQLRight invokes function
append_output() of oracle Index to insert SELECT statements.
append_output() picks up existing SELECTs from the select

queue, and mutates them in a controlled manner: it will keep
the SELECT keyword but can modify other components. After
generating a set of valid SELECTs, SQLRight appends them to
the previously generated query set, i.e., after CREATE TABLE
and INSERT. At this moment, we complete the query mutation.

Next, SQLRight applies the validation to update the
operands in each query, to make the whole query set seman-
tically correct. For example, it updates the table names in
FROM clauses of SELECTs so that they use the table created
by CREATE TABLE. After that, SQLRight sends the query set
to function transform() to produce functionally equivalent
forms. transform() picks some CREATE INDEX statements
from the normal queue, and mutates them for new operations,
like adding the UNIQUE before INDEX. It inserts the generated
CREATE UNIQUE INDEX statements into the given query set
randomly, and updates the operands accordingly (similar to
validation). transform() returns the new query sets back to
SQLRight, and SQLRight feeds the original and new query
sets to SQLite for execution. After the execution, SQLRight
invokes function compare() to decide whether the results are
consistent or not. In this example, compare() notices that one
result has one row while another has two. Therefore, it notifies
SQLRight about the inconsistency, and SQLRight will raise an
alarm of the potential logical bug.

Regardless of the consistency, SQLRight checks whether
the execution of SQLite triggers new code coverage or not.
If so, it extracts SELECTs from the combined query set and
saves them into the select queue, and stores other statements
into the normal queue. Now, SQLRight completes one fuzzing
round, and it will move on to mutate other query sets.

18

https://sqlite.org/partialindex.html#unique_partial_indexes
https://sqlite.org/partialindex.html#unique_partial_indexes

	Introduction
	Background & Challenges
	An Example Logical Bug
	Oracles for Logical Bug Detection
	Coverage-guided Testing
	Challenges of Fuzzing Logical Bugs

	Design of [0.5]SQLRight
	Validity-oriented Query Generation
	Cooperative Mutation
	Dedicated Parsing
	Context-based IR Instantiation
	Non-determinism Mitigation

	General Interfaces for DBMS Oracles

	Implementation
	Evaluation
	DBMS Logical Bugs
	Comparison with Existing Tools
	Contribution of Coverage Feedback
	Contribution of Validity

	Discussion
	Related Work
	Conclusion
	More Case Studies on Detected Bugs
	Generating the Motivating Example

