APOLLO

AUTOMATICDETECTION AND DIAGNOSIS OF
PERFORMANCE REGRESSIONS IN DATABASE SYSTEMS

Jinho Jung, Hong Hu, Joy Arulraj,
Taesoo Kim, Woonhak Kang*®

Georgia *
Tooh @ ebay

—

APOLLO

* Holistic toolchain for debugging DBMS

€ AUTOMATICALLY FIND SQL QUERIES EXHIBITING
PERFORMANCE REGRESSIONS

€@ AUTOMATICALLY DIAGNOSE THE ROOT CAUSE OF
PERFORMANCE REGRESSIONS

Georgia
Tegch 2

MOTIVATION: DBMS COMPLEXITY

B PostgreSQL m SQLite
60

50 47.7 T 7X
Code 4 Increase
oge
Size 30 26.4
(MB) 20

8.7
10 6.1 4.4
, H_C — L
2000 2010 Present

Release Year

Georgia
Te%h 3

MOTIVATION: PERFORMANCE REGRESSIONS

CHALLENGING TO BUILD SYSTEM WITH PREDICTABLE PERFORMANCE

From: "Alex Ignatov"” <a(dot)ignatov(at)postgrespro(dot)ru=
To: "'Dmitry Shalashov™ <skaurus(at)gmail(dot)com>

Cc <pgsql-performance(at)postgresgl(dotjorg>

Subject: RE: Query became very slow after 9.6 -> 10 upgrade
Date: 2017-11-22 14:44:18
Message-ID:137da01d363a0$603cc970$20b65c50$@postgresprd
Views: Raw Message | Whole Thread | Download mbox | R
Thread: 2017-11-22 14:44:18 from "Alex Ignatov" <a(dot)ig
Lists: pgsql-hackers pgsql-performance

(Uuery: https://pastebin.com/9b953tTY

It was running under 3 seconds (it's our default timeout) an

MySQI.ﬂ

RE: Query became very slow after 9.6 I e |

Bug #87164 Queries running much slower in version 5.7 versus 5.6

Login / R

Submitted: 21 Jul 2017 16:28 Modified: 19 Apr 2018 5:46
Reporter: Alok Pathak Email Updates: Subscribe

Status: Won't fix Impact on me: None | Affects Me

Category: MySQL Server: Optimizer Severity: 53 (Non-critical)

Version: 5.7, 5.7.18, 5.7.19 0S5: CentOS (6 &7)

Assigned to: CPU Architecture: Any
Tags: regression
J View | | Add Comment | | Files | | Developer | | Edit Submission | | View Progress Log | | Contributions |

[21 Jul 2017 16:28] Alok Pathak

Description:

#fter upgrading to MysQL 5.7, some gueries are running very slow, taking abnormally long time in statistics s

When | run this query in 5.6, it finish in less than a second but on MySOL 5.7 it's taking approx 3 minutes.

Georgia
Tech

4

MOTIVATION: PERFORMANCE REGRESSIONS

CHALLENGING TO BUILD SYSTEM WITH PREDICTABLE PERFORMANCE

* Scenario: User upgrades a DBMS installation
s Query suddenly takes 10 times longer to execute
= Due to unexpected interactions between different components
= Refer to this behavior as a performance regression

* Performance regression can hurt user productivity
= Can easily convert an interactive query to an overnight one

Georgia
Te%h 5

MOTIVATION: PERFORMANCE REGRESSIONS

> 10,000x
SELECT R0O.S DIST 06
FROM PUBLIC.STOCK AS RO slowdown

WHERE (RO.S_W_ID < CAST(LEAST(0, 1) AS INT8))

LATEST VERSION
OF POSTGRESQL

* Due to a recent optimizer update
s New policy for choosing the scan algorithm
= Resulted in over-estimating the number of rows in the table
= Earlier version: Fast bitmap scan
= Latest version: Slow sequential scan

Georgia
Te%h 6

MOTIVATION: DETECTING REGRESSIONS

@ HOW TO DISCOVER QUERIES EXHIBITING REGRESSIONS?

SELECT NO FROM ORDER AS RO

_ WHERE EXISTS (
SELECT CNT FROM SALES AS R1

WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
slower on WHERE (RO.INFO IS NOT NULL));

latest version

Query runs

L

Georgia
Tech

MOTIVATION: REPORTING REGRESSIONS

@ HOW TO SIMPLIFY QUERIES FOR REPORTING REGRESSION?

SELECT NO FROM ORDER AS RO

_ WHERE EXISTS
SELECT CNT FROM SALES AS R1

WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
slower on WHERE (RO.INFO IS NOT NULL));

latest version

Query runs

L

Georgia
Tech

MOTIVATION: DIAGNOSING REGRESSIONS

© HOW TO DIAGNOSE THE ROOT CAUSE OF THE REGRESSION?

SELECT NO FROM ORDER AS RO

_ WHERE EXISTS (
SELECT CNT FROM SALES AS R1

WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
slower on WHERE (RO.INFO IS NOT NULL));

latest version

Query runs

Georgia
Tech

APOLLO TOOLCHAIN

@ HOW TO DISCOVER QUERIES EXHIBITING REGRESSIONS?

SQLFUZZ: FEEDBACK-DRIVEN FUZZING

APOLLOTOOLCHAIN BUG
REPORTS

/)
- Query

- Commit

SQLFUZZ SQLMIN SQLDEBUG

- File list
- Function

¥ = @

10

APOLLO TOOLCHAIN

@ HOW TO SIMPLIFY QUERIES FOR REPORTING REGRESSION?

SQLMIN: BI-DIRECTIONAL QUERY REDUCTION ALGORITHMS

APOLLOTOOLCHAIN BUG
REPORTS

/)
- Query

- Commit

SQLFUZZ SQLDEBUG

- File list
- Function

o &

11

APOLLO TOOLCHAIN

© HOW TO DIAGNOSE THE ROOT CAUSE OF THE REGRESSION?

SQLDEBUG: STATISTICAL DEBUGGING + COMMIT BISECTION

APOLLOTOOLCHAIN

SQLFUZZ

8,

SQLMIN

=) Wy

AR

BUG

REPORTS

/)

- Query
- Commit

- File list
- Function

12

TALK OVERVIEW

APOLLOTOOLCHAIN BUG

REPORTS
- Query
SQLFUZZ SQLMIN SQLDEBUG - Commit
P & # Y ‘ - File list
UU =9 AR - Function
VERSION —

Georgia
Te%h 13

#1: SQLFUZZ — DETECTING REGRESSIONS

S— S—
S E
N S
OLD NEW
VERSION VERSION
SQLFuzz
Random Candidate Queries
© Query queries (@) Query | gueries [€) Bug exhibiting
Generator | .o to; WS\ jidator performance
regression

Update SQL grammar
probability table

Georgia
Te%h 14

#1: SQLFUZZ — DETECTING REGRESSIONS
@ QUERY GENERATOR: RANDOM QUERY GENERATION

Retrieve Check

schema
Query com pIeX|ty ;
I Generator

Valid Queries
queries for fuzzing

SQL grammar
| probability table

Georgia
Tech

15

#1: SQLFUZZ — DETECTING REGRESSIONS
© QUERY EXECUTOR: FEEDBACK-DRIVEN FUZZING

OLD NEW
VERSION VERSION

Found
Regression?

Query
Executor

Georgia
Tech

SELECT RO.S_DIST_06
FROM PUBLIC.STOCK AS RO
WHERE (RO.S_W_ID <

CAST| (LEAST(0, 1) AS INTS8))

Update table

CASE LEFT JOIN

CAST +0.1 |
SQL grammar probability table

LIMIT

16

#1: SQLFUZZ — DETECTING REGRESSIONS
© REGRESSION VALIDATOR: REDUCING FALSE POSITIVES

Filtering rules

Non-deterministic behavior?
Non-executed plan?

Regression
Query

Usage of catalog statistics?
Enough memory?
Limit statement?

Query is too complex?

‘.....

Georgia filtering rules .
Tech

TALK OVERVIEW

APOLLOTOOLCHAIN BUG
REPORTS

- Query

SQLFUZZ SQLDEBUG - Commit

<>
— N @
=8
VERSION =

- File list
- Function

Georgia
Te%h 18

#2: SQLMIN — REPORTING REGRESSIONS

* Bottom-up Query Reduction

s Extract valid sub-query

* Top-down Query Reduction

s [teratively removes unnecessary expressions

Georgia
Tech

19

#2: SQLMIN — REPORTING REGRESSIONS

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (
SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.CO = 10) AND (S0.C1 IS NULL))
) THEN S0.CO END AS (2,
FROM (
SELECT RO.I_PRICE AS CO, RO.I DATA AS C1,
(SELECT ID FROM ITEM) AS C2
FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL
OR (RO.PRICE IS NOT S1.C2)
LIMIT 1000) AS SO) AS S1;

20

#2: SQLMIN — REPORTING REGRESSIONS

SELECT S51.C2
FROM (

(SELECT
CASE WHEN EXISTS (
SELECT S0.CO

FROM ORDER AS R1
WHERE ((S0.CO = 10) AND (SO0.C1 IS NULL))
) THEN SO0.CO END AS C2,

FROM (
SELECT RO.I_PRICE AS CO, RO.I_DATA AS (1,
(SELECT ID FROM ITEM) AS C2
FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL

. LIMIT 1000) AS 50) AS S1;

" A

BOTTOM-UP

REDUCTION
EXTRACT SUB-QUERY

L J
! J
L J
L J
4

+* Remove
dependencies

21

#2: SQLMIN — REPORTING REGRESSIONS

[SELECT
CASE WHEN EXISTS (
SELECT S0.CO
FROM ORDER AS R1
wHERE ((50.co = 10) NN
) THEN S0.CO END AS C2,
FROM (

seLecT Ro.I_PRICE As co, [

FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL

AS SO) AS S1;

TOP-DOWN

REDUCTION
REMOVE ELEMENTS

Remove condition

Remove columns
Remove sub-queries

Remove clause
22

#2: SQLMIN — REPORTING REGRESSIONS

[SELECT
CASE WHEN EXISTS (
SELECT S0.CO
FROM ORDER AS R1
WHERE ((S0.C0 = 10))
) THEN S0.CO END AS C2,
FROM (
SELECT RO.I_PRICE AS CO,
FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL) AS S0)
KAS S1;

Georgia
Tech

TALK OVERVIEW

APOLLOTOOLCHAIN BUG
REPORTS
- Query
SQLFUZZ SQLMIN SQLDEBUG - Commit
> Y - File list
— & - @ .
=2 AR - Funct
VERSION = unction

Georgia
Te%h 24

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Partially Control-flow

SQLDEBUG Reduced DBMS Graphs BUG
queries (Traces) REPORTS
------- — pmmm——
= . . } 5 o I{ =l E E Statistical - Query
- :] isti
B » . » = »i DD » Debugger - Commit
R : . : e Fast : =S : - File list
egresson N _T_____ /] % BY; .
query 1 T - Function
Commit ___,ﬂ
bisection |—==="~"
First commit
exhibiting regression?
Georgia e

Tech

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

@ COMMIT BISECTION: FIND EARLIEST PROBLEMATIC COMMIT

COMMIT 1 OLD VERSION (FAST QUERY EXECUTION)

COMMIT 2 PROBLEM BEGINS HERE!

COMMIT 3

COMMIT 5 NEW VERSION (SLOW QUERY EXECUTION)
Geo g a 56

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

@ QUERY REDUCTION: PARTIALLY REDUCED QUERIES

. . 1 . | e e
Original | Partially reduced | Minimized
i ' i
query ! queries : query
| |
| |
I EEEEEEEEEEEEE I
| |
SELECT NO FROM :
ORDER AS RO WHERE I
EXISTS (SELECT SELECT CNT

FROM SALES
WHERE CNT > ID

CNT
FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM

Collectiset Ready to use statistical debugging?

of queries
Georgia
Te%h 27

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

© CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Functions
int func(){
‘ if (cond1)
work:
OLD VERSION }
int func(){
mmm) | if (cond1)
work:
NEW VERSION |

Georgia
Tech

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

© CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Functions Traces

int func(){ ~f- .

‘ if (cond1) :=f=ee _

work;
OLD VERSION }

int func(){ f-eeee .
mmm) | if (cond1) oot

work;
NEW VERSION)

Georgia
Tech

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

© CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Functions Traces Trace Alignment
int func({ : Tt func + 0x0
‘ |f (Cond1) B - oh phh I funC+OX20 QTRUE
work;
OLD VERSION)
intfunc({ -t +-+1 func + 0x0
mm) [if (cond1) -f-f +++4 func +0x20 = FALS
work;
NEW VERSION }
Georgia 30

Tech

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

O STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

" pRED. | RESULT
Fast query ‘ ! TAKEN \l

execution traces g TAKEN

k IIII
ENEE sttt

Slow query ‘ ! TAKEN / model
NOT

execution traces 2
TAKEN

Georgia
Tech

31

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

O STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

< " pRED. | RESULT
Fast query ‘ ! TAKEN \l

execution traces g TAKEN

mm
IIII »

foo.c bar()
EENEE sttistical
Slow query mm— p -l / model Final report
NOT

execution traces 2
TAKEN

Georgia
Te%h 32

RECAP

~
Ny
VERSION =

Georgia
Tech

APOLLOTOOLCHAIN

SQLFUZZ

2,

SQLMIN

=)

AR

SQLDEBUG

R C!

BUG
REPORTS

- Query
- Commit

- File list
- Function

33

EVALUATION

* Tested database systems
s PostgreSQL, SQLite

* Binary instrumentation to get control flow graphs
s DynamoRIO instrumentation tool

e Evaluation

s Efficacy of SQLFuzz in detecting regressions?
s Efficacy of SQLMin in reducing queries?
s Accuracy of SQLDebug in diagnosing regressions?

Georgia
Tech

34

#1: SQLFUZZ — DETECTING REGRESSIONS

Discovered 10 previously unknown,

250 unique performance regressions.
200x
200
Mean Tperformance
Performance 150 drop
Drop 00
(Ratio)

50
Lower is
Better 0

o PostgreSQL SQLite
eorgia

Tech 35

#1: SQLFUZZ — FALSE POSITIVES

False
Positives
Queries
(Percent)

Lower is
Better

Georgia
Tech

100

10

0.1

0.01

0.001

Discovered
Queries

Filtering rules remove
almost all false positives

\

SQLFuzz

36

#2: SQLMIN — REPORTING REGRESSIONS

2000

1500
Query

Size
(Bytes)

. 500
Lower Is
1 Better

1000

Georgia
Tech

Discovered
Queries

Significant reduction
in query size

SQLMin

37

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Branch related to root cause
Correctly identified in all cases
(within top-3 ranked branches)

H FIRST RANKED BRANCH
m SECOND RANKED BRANCH
B THIRD RANKED BRANCH

10 regressions

Georgia
Te%h 38

CASE STUDY #1: OPTIMIZER UPDATE

SELECT COUNT () > 1000x
FROM (SELECT RO.ID

FROM CUSTOMER AS RO LEFT JOIN STock As rR1 | slow down
LATEST VERSION

ON (RO.STREET = R1.DIST)
WHERE |R1.DIST |IS NOT NULL]) AS SO
WHERE EXISTS (SELECT ID FROM CUSTOMER);

OF SQLITE

* Due to a bug fix (for a correctness bug)
s Breaks query optimization
s Optimizer no longer transforms the LEFT JOIN operator

Georgia
Te%h 39

CASE STUDY #2: EXECUTION ENGINE UPDATE

SELECT RO.ID FROM ORDER AS RO 3x
WHERE EXISTS (SELECT COUNT(*)

FROM (SELECT DISTINCT RO.ENTRY | slow down
FROM CUSTOMER AS R1
WHERE (FALSE)) AS S1);

LATEST VERSION
OF POSTGRESQL

* Hashed aggregation executor update

s Resulted in redundantly building hash tables

Georgia
Te%h 40

CONCLUSION

* APOLLO (v1.0)

s Toolchain for detecting & diagnosing regressions
s Open-sourced: https://github.com/sslab-gatech/apollo

* Adding support for other types of bugs (v2.0)

s Correctness bugs
s Performance bugs
s Database corruption

Georgia
Tech

41

https://github.com/sslab-gatech/apollo

CONCLUSION

* Interested in integrating APOLLO with more DBMSs

= Discovered > 5 performance regressions in CockroachDB
s Improve the toolchain based on developer feedback

* Automation will help reduce labor of developing DBMSs
s Developers get to focus on more important problems

Georgia
Te%h 42

ACKNOWLEDGEMENTS

Supported by:

Developers:

Postgre SQL

Georgia
Tech

VSQLM T

@

Alibaba.com

Cockroach pe

43

END

JINHO.JUNG@GATECH.EDU

	APOLLO�AUTOMATIC DETECTION AND DIAGNOSIS OF �PERFORMANCE REGRESSIONS IN DATABASE SYSTEMS
	APOLLO
	MOTIVATION: DBMS COMPLEXITY
	MOTIVATION: PERFORMANCE REGRESSIONS
	MOTIVATION: PERFORMANCE REGRESSIONS
	MOTIVATION: PERFORMANCE REGRESSIONS
	MOTIVATION: DETECTING REGRESSIONS
	MOTIVATION: REPORTING REGRESSIONS
	MOTIVATION: DIAGNOSING REGRESSIONS
	APOLLO TOOLCHAIN
	APOLLO TOOLCHAIN
	APOLLO TOOLCHAIN
	TALK OVERVIEW
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — DETECTING REGRESSIONS
	TALK OVERVIEW
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	TALK OVERVIEW
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	RECAP
	EVALUATION
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — FALSE POSITIVES
	#2: SQLMIN — REPORTING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	CASE STUDY #1: OPTIMIZER UPDATE
	CASE STUDY #2: EXECUTION ENGINE UPDATE
	CONCLUSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	슬라이드 번호 44

