
APOLLO
AUTOMATIC DETECTION AND DIAGNOSIS OF

PERFORMANCE REGRESSIONS IN DATABASE SYSTEMS

Jinho Jung, Hong Hu, Joy Arulraj,
Taesoo Kim, Woonhak Kang*

*

APOLLO

• Holistic toolchain for debugging DBMS

2

1

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

AUTOMATICALLY FIND SQL QUERIES EXHIBITING
PERFORMANCE REGRESSIONS

2 AUTOMATICALLY DIAGNOSE THE ROOT CAUSE OF
PERFORMANCE REGRESSIONS

MOTIVATION: DBMS COMPLEXITY

3

6.1

26.4

47.7

1.4 4.4
8.7

0

10

20

30

40

50

60

2000 2010 Present

Release Year

PostgreSQL SQLite

7x
increase

Code
Size
(MB)

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

MOTIVATION: PERFORMANCE REGRESSIONS

JINHO JUNG (JINHO.JUNG@GATECH.EDU) 4

CHALLENGING TO BUILD SYSTEM WITH PREDICTABLE PERFORMANCE

MOTIVATION: PERFORMANCE REGRESSIONS

• Scenario: User upgrades a DBMS installation
▫ Query suddenly takes 10 times longer to execute
▫ Due to unexpected interactions between different components
▫ Refer to this behavior as a performance regression

• Performance regression can hurt user productivity
▫ Can easily convert an interactive query to an overnight one

JINHO JUNG (JINHO.JUNG@GATECH.EDU) 5

CHALLENGING TO BUILD SYSTEM WITH PREDICTABLE PERFORMANCE

MOTIVATION: PERFORMANCE REGRESSIONS

6

SELECT R0.S_DIST_06
FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID < CAST(LEAST(0, 1) AS INT8))

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

> 10,000x
slowdown

LATEST VERSION
OF POSTGRESQL

• Due to a recent optimizer update
▫ New policy for choosing the scan algorithm
▫ Resulted in over-estimating the number of rows in the table
▫ Earlier version: Fast bitmap scan
▫ Latest version: Slow sequential scan

MOTIVATION: DETECTING REGRESSIONS

7

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

Query runs
slower on

latest version

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

1 HOW TO DISCOVER QUERIES EXHIBITING REGRESSIONS?

MOTIVATION: REPORTING REGRESSIONS

8JINHO JUNG (JINHO.JUNG@GATECH.EDU)

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

Query runs
slower on

latest version

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

2 HOW TO SIMPLIFY QUERIES FOR REPORTING REGRESSION?

MOTIVATION: DIAGNOSING REGRESSIONS

9JINHO JUNG (JINHO.JUNG@GATECH.EDU)

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

Query runs
slower on

latest version

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

3 HOW TO DIAGNOSE THE ROOT CAUSE OF THE REGRESSION?

APOLLO TOOLCHAIN

10

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

1 HOW TO DISCOVER QUERIES EXHIBITING REGRESSIONS?

SQLFUZZ: FEEDBACK-DRIVEN FUZZING

APOLLO TOOLCHAIN

11JINHO JUNG (JINHO.JUNG@GATECH.EDU)

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

2 HOW TO SIMPLIFY QUERIES FOR REPORTING REGRESSION?

SQLMIN: BI-DIRECTIONAL QUERY REDUCTION ALGORITHMS

APOLLO TOOLCHAIN

12JINHO JUNG (JINHO.JUNG@GATECH.EDU)

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

3 HOW TO DIAGNOSE THE ROOT CAUSE OF THE REGRESSION?

SQLDEBUG: STATISTICAL DEBUGGING + COMMIT BISECTION

TALK OVERVIEW

13

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#1: SQLFUZZ — DETECTING REGRESSIONS

14

OLD
VERSION

NEW
VERSION

Query
Generator

Query
Executor

Bug
Validator

SQLFuzz

Random
queries

Candidate
queries

Queries
exhibiting

performance
regression

Update SQL grammar
probability table

1 2 3

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#1: SQLFUZZ — DETECTING REGRESSIONS

15

Query
Generator

Retrieve
schema

SQL grammar
probability table

Valid
queries

Check
complexity

Queries
for fuzzing

SELECT 0.3 LEFT JOIN 0.3

LIMIT 0.2 CAST 0.2

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

1 QUERY GENERATOR: RANDOM QUERY GENERATION

#1: SQLFUZZ — DETECTING REGRESSIONS

16

OLD
VERSION

NEW
VERSION

Query
Executor

Found
Regression?

SELECT R0.S_DIST_06
FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID <
CAST (LEAST(0, 1) AS INT8))

Update table

CASE LEFT JOIN

LIMIT CAST +0.1

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

2 QUERY EXECUTOR: FEEDBACK-DRIVEN FUZZING

SQL grammar probability table

#1: SQLFUZZ — DETECTING REGRESSIONS

17

1 Non-deterministic behavior?

2 Non-executed plan?

3 Usage of catalog statistics?

4 Enough memory?

5 Limit statement?

6 Query is too complex?

7 …

Developers

Updated
filtering rules

Regression
Query

Filtering rules

Report

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

3 REGRESSION VALIDATOR: REDUCING FALSE POSITIVES

TALK OVERVIEW

18

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#2: SQLMIN — REPORTING REGRESSIONS

• Bottom-up Query Reduction
▫ Extract valid sub-query

• Top-down Query Reduction
▫ Iteratively removes unnecessary expressions

19JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#2: SQLMIN — REPORTING REGRESSIONS

20

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#2: SQLMIN — REPORTING REGRESSIONS

21

BOTTOM-UP
REDUCTION
EXTRACT SUB-QUERY

Remove
dependencies

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

#2: SQLMIN — REPORTING REGRESSIONS

22

Remove condition

Remove columns
Remove sub-queries

Remove clause
JINHO JUNG (JINHO.JUNG@GATECH.EDU)

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

TOP-DOWN
REDUCTION
REMOVE ELEMENTS

#2: SQLMIN — REPORTING REGRESSIONS

23JINHO JUNG (JINHO.JUNG@GATECH.EDU)

SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0,
FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL) AS S0)

AS S1;

TALK OVERVIEW

24

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

25

Slow

Fast

DBMS

Commit
bisection

SQLMIN

SQLDEBUG

Regression
query

First commit
exhibiting regression?

Statistical
Debugger

Control-flow
Graphs
(Traces)

Partially
Reduced
queries

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

BUG
REPORTS

- Query
- Commit
- File list
- Function

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

26

COMMIT 1

COMMIT 2

COMMIT 3

COMMIT 5 NEW VERSION (SLOW QUERY EXECUTION)

OLD VERSION (FAST QUERY EXECUTION)

PROBLEM BEGINS HERE!

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

1 COMMIT BISECTION: FIND EARLIEST PROBLEMATIC COMMIT

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

27

Partially reduced
queries

Minimized
query

Original
query

SELECT NO FROM
ORDER AS R0 WHERE
EXISTS (SELECT
CNT
FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM

SELECT CNT
FROM SALES
WHERE CNT > ID

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

2 QUERY REDUCTION: PARTIALLY REDUCED QUERIES

Collect set
of queries

Ready to use statistical debugging?

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

28

Functions

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

OLD VERSION

NEW VERSION

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

29

Functions Traces

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

0x400
0x420 TRUE

0x500
0x520 FALSE

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

OLD VERSION

NEW VERSION

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

30

Functions Traces

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

0x400
0x420 TRUE

0x500
0x520 FALSE

Trace Alignment

func + 0x0
func + 0x20  TRUE

func + 0x0
func + 0x20  FALSE

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

OLD VERSION

NEW VERSION

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

31

Statistical
model

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

Fast query
execution traces

Slow query
execution traces

PRED. RESULT

1 TAKEN

2 TAKEN

PRED. RESULT

1 TAKEN

2 NOT
TAKEN

4 STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

32

Fast query
execution traces

Slow query
execution traces

Final report

RANK FILE FUNCTION LINE

1 foo.c bar() 2

… … … …

PRED. RESULT

1 TAKEN

2 TAKEN

PRED. RESULT

1 TAKEN

2 NOT
TAKEN

Statistical
model

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

4 STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

RECAP

33

OLD
VERSION

NEW
VERSION

SQLFUZZ SQLMIN SQLDEBUG

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File list
- Function

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

EVALUATION

• Tested database systems
▫ PostgreSQL, SQLite

• Binary instrumentation to get control flow graphs
▫ DynamoRIO instrumentation tool

• Evaluation
▫ Efficacy of SQLFuzz in detecting regressions?
▫ Efficacy of SQLMin in reducing queries?
▫ Accuracy of SQLDebug in diagnosing regressions?

34JINHO JUNG (JINHO.JUNG@GATECH.EDU)

#1: SQLFUZZ — DETECTING REGRESSIONS

35

218 201

0

50

100

150

200

250

PostgreSQL SQLite

200x
performance
drop

Mean
Performance

Drop
(Ratio)

Lower is
Better

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

Discovered 10 previously unknown,
unique performance regressions.

#1: SQLFUZZ — FALSE POSITIVES

36

99

0.0044
0.001

0.01

0.1

1

10

100

Discovered
Queries

SQLFuzz

False
Positives
Queries
(Percent)

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

Lower is
Better

Filtering rules remove
almost all false positives

#2: SQLMIN — REPORTING REGRESSIONS

37

1602

380
0

500

1000

1500

2000

Discovered
Queries

SQLMin

Query
Size

(Bytes)

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

Lower is
Better

Significant reduction
in query size

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

38

5
2

3 FIRST RANKED BRANCH

SECOND RANKED BRANCH

THIRD RANKED BRANCH

10 regressions
JINHO JUNG (JINHO.JUNG@GATECH.EDU)

Branch related to root cause
Correctly identified in all cases

(within top-3 ranked branches)

CASE STUDY #1: OPTIMIZER UPDATE

39

SELECT COUNT (∗)
FROM (SELECT R0.ID
FROM CUSTOMER AS R0 LEFT JOIN STOCK AS R1
ON (R0.STREET = R1.DIST)
WHERE R1.DIST IS NOT NULL) AS S0

WHERE EXISTS (SELECT ID FROM CUSTOMER);

• Due to a bug fix (for a correctness bug)
▫ Breaks query optimization
▫ Optimizer no longer transforms the LEFT JOIN operator

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

> 1000x
slow down

LATEST VERSION
OF SQLITE

CASE STUDY #2: EXECUTION ENGINE UPDATE

40

SELECT R0.ID FROM ORDER AS R0
WHERE EXISTS (SELECT COUNT(∗)

FROM (SELECT DISTINCT R0.ENTRY
FROM CUSTOMER AS R1
WHERE (FALSE)) AS S1);

• Hashed aggregation executor update

▫ Resulted in redundantly building hash tables

JINHO JUNG (JINHO.JUNG@GATECH.EDU)

3x
slow down

LATEST VERSION
OF POSTGRESQL

CONCLUSION

41JINHO JUNG (JINHO.JUNG@GATECH.EDU)

• APOLLO (v1.0)
▫ Toolchain for detecting & diagnosing regressions
▫ Open-sourced: https://github.com/sslab-gatech/apollo

• Adding support for other types of bugs (v2.0)
▫ Correctness bugs
▫ Performance bugs
▫ Database corruption

https://github.com/sslab-gatech/apollo

CONCLUSION

42JINHO JUNG (JINHO.JUNG@GATECH.EDU)

• Interested in integrating APOLLO with more DBMSs
▫ Discovered > 5 performance regressions in CockroachDB
▫ Improve the toolchain based on developer feedback

• Automation will help reduce labor of developing DBMSs
▫ Developers get to focus on more important problems

ACKNOWLEDGEMENTS

JINHO JUNG (JINHO.JUNG@GATECH.EDU) 43

Supported by:

Developers:

END
JINHO.JUNG@GATECH.EDU

	APOLLO�AUTOMATIC DETECTION AND DIAGNOSIS OF �PERFORMANCE REGRESSIONS IN DATABASE SYSTEMS
	APOLLO
	MOTIVATION: DBMS COMPLEXITY
	MOTIVATION: PERFORMANCE REGRESSIONS
	MOTIVATION: PERFORMANCE REGRESSIONS
	MOTIVATION: PERFORMANCE REGRESSIONS
	MOTIVATION: DETECTING REGRESSIONS
	MOTIVATION: REPORTING REGRESSIONS
	MOTIVATION: DIAGNOSING REGRESSIONS
	APOLLO TOOLCHAIN
	APOLLO TOOLCHAIN
	APOLLO TOOLCHAIN
	TALK OVERVIEW
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — DETECTING REGRESSIONS
	TALK OVERVIEW
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	#2: SQLMIN — REPORTING REGRESSIONS
	TALK OVERVIEW
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	RECAP
	EVALUATION
	#1: SQLFUZZ — DETECTING REGRESSIONS
	#1: SQLFUZZ — FALSE POSITIVES
	#2: SQLMIN — REPORTING REGRESSIONS
	#3: SQLDEBUG — DIAGNOSING REGRESSIONS
	CASE STUDY #1: OPTIMIZER UPDATE
	CASE STUDY #2: EXECUTION ENGINE UPDATE
	CONCLUSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	슬라이드 번호 44

