
Enforcing Unique Code Target Property
for Control-Flow Integrity

Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,

William R. Harris
†∗
, Taesoo Kim and Wenke Lee

Georgia Institute of Technology
†
Galois Inc.

ABSTRACT
The goal of control-flow integrity (CFI) is to stop control-hijacking

attacks by ensuring that each indirect control-flow transfer (ICT)

jumps to its legitimate target. However, existing implementations

of CFI have fallen short of this goal because their approaches are

inaccurate and as a result, the set of allowable targets for an ICT

instruction is too large, making illegal jumps possible.

In this paper, we propose the Unique Code Target (UCT) prop-

erty for CFI. Namely, for each invocation of an ICT instruction,

there should be one and only one valid target. We develop a proto-

type called µCFI to enforce this new property. During compilation,

µCFI identifies the sensitive instructions that influence ICT and

instruments the program to record necessary execution context.

At runtime, µCFI monitors the program execution in a different

process, and performs points-to analysis by interpreting sensitive

instructions using the recorded execution context in a memory safe

manner. It checks runtime ICT targets against the analysis results

to detect CFI violations. We apply µCFI to SPEC benchmarks and

2 servers (nginx and vsftpd) to evaluate its efficacy of enforcing

UCT and its overhead. We also test µCFI against control-hijacking
attacks, including 5 real-world exploits, 1 proof of concept COOP

attack, and 2 synthesized attacks that bypass existing defenses. The

results show that µCFI strictly enforces the UCT property for pro-

tected programs, successfully detects all attacks, and introduces

less than 10% performance overhead.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security;

KEYWORDS
Control-flow integrity; Unique code target; Performance; Intel PT

ACM Reference Format:
HongHu, ChenxiongQian, Carter Yagemann, Simon PakHoChung,William

∗ This article contains work performed in part while Harris was supported by the

Georgia Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243797

R. Harris, Taesoo Kim and Wenke Lee. 2018. Enforcing Unique Code Tar-

get Property for Control-Flow Integrity. In 2018 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’18), October 15–19, 2018,

Toronto, ON, Canada. ACM, New York, NY, USA, 17 pages. https://doi.org/

10.1145/3243734.3243797

1 INTRODUCTION
Control-flow integrity (CFI) [1] is a principled solution to detect

control-hijacking attacks, in which attackers corrupt control data,

like a function pointer, to divert the control flow. It compares the

runtime target of each indirect control-flow transfer (ICT) instruc-

tion (i.e., indirect call/jmp or ret) against a set of allowed targets,

and reports any discrepancy as control-hijacking attacks.

The strength of a CFI system hinges on its model of secure be-

havior, expressed via its set of allowed targets for ICT instructions.

An overly strict model breaks system functionality due to false

alarms, while a permissive model can be evaded by attackers, like

in [10, 25, 55]. These attacks highlight an inherent mismatch be-

tween current CFI models that rely on static analysis and the ideal

model: static analysis identifies benign targets for each ICT instruc-

tion from all possible runs, while the ideal model defines the valid

targets for each ICT instruction for only the currently observed exe-

cution. Recent approaches use runtime information to reduce the

number of allowed targets [21, 48, 61]. However, these methods

still permit hundreds of targets for some ICT instructions. Consider

a code pointer retrieved from an array via a variable index. With-

out knowing the index value, CFI solutions have to treat all array

elements as allowed targets.

In this paper, we propose a necessary feature of a precise CFI —

the Unique Code Target (UCT) property. This property requires that

at each step of a protected execution, a programmay only transition

to one unique valid target. For an execution without any attack,

the allowed target for each invocation of an ICT instruction is the

same as the one used in the execution to avoid false alarms. When

control data is corrupted to hijack the execution path, the model

should detect the deviation and conclude a control-hijacking attack.

Similar to existing CFI work, we focus on control-data attacks and

consider non-control data attacks [14, 32] out of scope.

The key to achieving the UCT property is collecting the neces-

sary runtime information and using it to augment the points-to

analysis on control data. As such information helps constrain the

set of allowed targets, we call it constraining data. However, it is

not trivial to design a CFI system that satisfies the UCT property.

Specifically, we have to address the following three challenges, 1)

how to accurately identify the constraining data, 2) how to collect

this data efficiently, and 3) how to perform the points-to analysis

efficiently and accurately.

https://doi.org/10.1145/3243734.3243797
https://doi.org/10.1145/3243734.3243797
https://doi.org/10.1145/3243734.3243797

1 typedef void (*FP)(char *);
2 void A(char *); void B(char *); void C(char *);
3 void D(char *); void E(char *);
4 // uid can be 0, 1, 2
5 void handleReq(int uid, char * input) {
6 FP arr[3] = {&A, &B, &C};
7 FP fpt = &D;
8 FP fun = NULL;
9 char buf[20];
10 if (uid < 0 || uid > 2) return;
11 if (uid == 0) {
12 fun = arr[0];
13 } else { // uid can be 1, 2
14 fun = arr[uid];
15 }
16 strcpy(buf, input); // stack buffer overflow
17 (*fun)(buf); // fun is corrupted
18 }

Figure 1: Code snippet vulnerable to control-flow hijacking attacks.
Attackers can exploit the stack buffer overflow at line 16 to corrupt the

function pointer fun.

We propose a system, µCFI, to address the aforementioned chal-

lenges and enforce the UCT property. µCFI performs static data-flow

analysis to accurately identify constraining data from the program

source code. The analysis starts from code pointers, and recur-

sively identifies variables that are involved in calculating known

constraining data. We also develop a novel arbitrary data collec-

tion technique to record all constraining data at runtime efficiently.

Specifically, we encode the constraining data as indirect control-

flow transfers, and rely on a hardware feature, Intel Processor Trace

(PT) for efficient recording. µCFI runs a monitor in parallel with

the program execution to parse recorded constraining data and

uses it to argument points-to analysis. To support efficient analysis,

we construct partial execution paths to avoid wasting effort on

security-unrelated operations. For each invocation of each ICT in-

struction, the monitor compares the real target against the points-to

analysis result, and reports inconsistencies as attacks.

We implement our design as a compiler and an execution moni-

tor. The monitor performs CFI checks in a different process after

each ICT instruction. To ensure security, it interacts with the kernel

to block the program execution at any security-sensitive system

call until all prior CFI checks succeed. This is similar to existing

CFI enforcement approaches [15, 21, 23, 61] and aims to prevent

attackers from inflicting damage on the system. Our prototype

focuses on forward-edge CFI (i.e., protecting call and jmp), and

leaves backward-edge CFI (i.e., protecting ret) to existing solu-

tions [17, 33, 54]. We integrate a shadow stack [17] into µCFI to
demonstrate its compatibility with backward-edge CFI solutions.

To measure the effectiveness and efficiency of our solution, we

use µCFI to protect several benchmarks and real-world programs,

including 14 SPEC CPU 2006 benchmarks, nginx web server, and vs-

ftpd FTP server, from 5 real-world exploits, 1 proof of concept COOP

attack, and 2 synthesized attacks that bypass existing defenses. µCFI
successfully enforces the UCT property at each invocation of each

ICT instruction for all tested programs. Attacks are successfully

detected and blocked by µCFI, as they trigger CFI violations at

runtime. µCFI introduces around 10% overhead to the protected

programs. Heavy techniques like memory safety [35, 42–44] or

data-flow integrity [12, 58] provide stronger security than the UCT

property, but lead to unacceptable performance overhead (116%

Table 1: Allowed target sets for various CFI solutions. The functions
listed are allowed targets for fun at line 17 of Figure 1, when uid=1. Our

solution µCFI allows the unique target.

line

no

CFI

type

CFI

static

CFI

πCFI
Pitty-

Pat

µCFI

0

*

A

B

C

D

E

A

B

C

- - -

6 A,B,C

arr[0]:A

arr[1]:B

arr[2]:C

arr[0]:A

arr[1]:B

arr[2]:C

7 A,B,C,D fpt:D fpt:D

14 A,B,C,D fun:B,C fun:B

17 A,B,C,D fun:B,C fun:B

∞ 5 3 4 2 1

for SoftBound+CETS, and 104% for data-flow integrity). Thus, our

method to enforce the UCT property is a more practical solution.

We make the following contributions in this paper:

• Unique code target property. We propose the UCT prop-

erty as the ultimate goal of control-flow integrity. A CFI

system that enforces the UCT property has exactly one al-

lowed target for each invocation of each indirect control-flow

transfer.

• Enforcement of UCT property. We design and imple-

ment an end-to-end system to enforce the UCT property.

To achieve this goal, we develop novel solutions to record ar-

bitrary execution information to support complete dynamic

program analysis. At the same time, we develop several tech-

niques to enable efficient UCT enforcement.

• Empirical evaluation. We evaluate our system on common

benchmarks, real-world servers, and attacks. The results

show that µCFI successfully enforces the UCT property on

all tested programs with around 10% overhead.

The rest of the paper is organized as follows. §2 illustrates the

problem we address. We describe our design in §3 and present

implementation details in §4. §5 describes an empirical evaluation of

our approach and §6 discusses implications of our system. We cover

the related work in §7, and conclude in §8. Appendix A formally

states and proves the correctness of our approach.

2 PROBLEM
In this section, we demonstrate the weakness of existing CFI im-

plementations with a motivating example and present our idea for

enforcing the UCT property.

2.1 Motivating example
Figure 1 shows a vulnerable code snippet that allows attackers

to hijack the control-flow. Function handleReq contains a stack-

based buffer overflow vulnerability at line 16, where the user input

(pointed to by input) is copied into a fixed-size buffer buf without

proper boundary checking. Attackers can craft inputs to corrupt

local variables on the stack, like the function pointer fun. When

fun is used at line 17 for the indirect function call, attackers can

hijack the execution to perform a malicious action.

Control-flow integrity aims to prevent such attacks. The idea is

to find the expected target(s) for each indirect control-flow transfer

and compare it with the real target at runtime to detect inconsis-

tencies. In this example, CFI will try to validate the value of fun

at line 17. Ideally, the check only permits one target for each run,

which is function A if uid is 0, function B if uid is 1, or function C

if uid is 2. If fun is corrupted to any other value, CFI will detect

that the ICT target is inconsistent and terminate the execution to

prevent any possible damage.

2.2 Incomplete protection by existing CFIs
Here we demonstrate the weakness of existing CFI solutions in

preventing attacks against this code. Table 1 shows the allowed

target sets enforced by different CFI solutions at line 17 of Figure 1

when uid is 1. If the vulnerable code is not protected (“no CFI”),

attackers can divert the control flow to any executable location (* in

the table). The type-based CFI solutions allow all functions whose

types match with the callsite [46, 59, 62], and thus permit 5 targets

(A, B, C, D, E) for the function pointer fun. Static CFI solutions have

to permit all possible targets for all possible benign inputs. Assum-

ing there is an oracle that can enumerate all possible execution

paths
1
, static CFI will enforce 3 targets: A, B and C. As such oracle

is still unavailable, real-world static CFI over-approximates the set

of allowed targets. Since it does not consider runtime information,

this set is the same across all invocations of the code.

We also consider two dynamic CFI solutions, πCFI and PittyPat,
and conclude that neither successfully enforces the ideal CFI policy

for this vulnerable code. πCFI starts with an empty set and adds

functions at runtime as the function addresses are referenced. The

code at line 6 uses the addresses of functions A, B, and C, so πCFI
adds them to the allowed targets set. Similarly, it adds function

D to the set at line 7 for variable fpt. Therefore, πCFI allows 4
targets at line 17. PittyPat provides the best security guarantee

among the existing solutions in Table 1 by utilizing the dynamic

execution path to perform points-to analysis. For example, at line

6, PittyPat updates the points-to relationship for each variable,

e.g., arr[1] points to B. PittyPat works well when it can infer the

points-to relationship from the execution path, but has to make

approximations when it cannot. For example, at line 14 fun is either

assigned the value of arr[1] or arr[2] depending on the value of

uid. Since PittyPat cannot obtain this value from the execution

path, it has to allow both targets at line 17. Attackers can choose

between calling functions B or C.

2.3 Enforcing UCT with full context
We propose to use the full execution context to perform online

points-to analysis on control data to enforce the UCT property.

Unlike previous solutions, we collect both the control-flow and the

necessary non-control data needed to produce a unique target for

each ICT. We refer to such non-control data as constraining data,

which we define by its property as follows:

Constraining data plays an important role in the calculation of

the indirect control-flow transfer target. However, it is neither a con-

trol data that directly represents a code address, nor a pointer that

will be dereferenced during the code pointer retrieval. The value of

1
Currently, no efficient implementation of such an oracle exists so it is approximated

using fuzzing or symbolic execution.

a constraining data cannot be inferred from even the accurate exe-

cution path until the affected indirect control-flow transfer happens.

Once its value is known, the analysis can accurately deduce the

unique ICT target for any execution path. Any data satisfying such

properties is an instance of constraining data. In the motivating

example in Figure 1, the function argument uid is constraining data

since it is used to determine the function pointer fun during the

array access at line 14, without which any analysis has to overap-

proximate the access result. There are three challenges to collect

constraining data and perform full-context-based points-to analysis

in real-world programs:

• Constraining data identification. We need to accurately

identify constraining data from a tremendous number of

program variables. Collecting superfluous data burdens both

the collection and analysis.

• Arbitrary data collection. No method can efficiently pass

arbitrary data from the execution to the analyzer. For ex-

ample, hardware features like Intel PT only capture change

of flow information [21]. Naive solutions with shared files

or memory have adverse effects on the cache, leading to

significant performance overhead [34].

• Efficient analysis. Dynamic analysis with execution con-

text is time-consuming [21, 23], and thus may slow down

the protected execution.

In this paper, we propose novel solutions to address these chal-

lenges and achieve efficient UCT enforcement. Before presenting

our design, we define our threat model and provide a brief intro-

duction of Intel PT.

2.4 Threat Model & Background
Our threat model is the same as related works [1, 59, 68, 69], in

which the adversary has full control over the victim’s process mem-

ory within the constraints of hardware page protection. Therefore,

he can perform memory reads or writes at any time during the

victim execution. His goal is to exploit memory errors (e.g., buffer

overflow) to hijack control. We focus on user space attacks, making

kernel exploits out of scope. For simplicity, we do not consider

dynamically generated code (e.g., JIT code emission).

Intel Processor Trace. Intel PT is a hardware feature in modern

Intel CPUs, which efficiently collects change of flow information.

PT only collects events that cannot be derived statically. Specifi-

cally, TNT packets record the branches taken by conditional jumps,

TIP packets log the targets of indirect control-flow transfers, FUP

packets log control-flow transfers caused by signals and interrupts,

and PGE and PGD packets indicate the addresses where PT en-

ables and disables tracing, respectively. With a PT trace, we can

completely reconstruct the program’s runtime execution path. PT

records traces directly to physical memory, bypassing the standard

processor caches to minimize performance side-effects. Since the

trace is collected by hardware and is only configurable from Ring 0,

the attacker cannot use it as a channel to directly attack the monitor

or evade its data collection.

3 SYSTEM DESIGN
We design µCFI as the first UCT enforcement system. It consists of

two components, the static compiler and the dynamic monitor, as

OS	&	CPU PT	driver Intel	PT

μCFI compiler

μCFI monitor

source	
code

constraining	
data	detector

constraining	
data	encoder

basic	block
ID	encoder

LLVM	IR

execution
process

points-to	
analyzer

trace
decoder

ID2BB

points-to
table

update
query

block	ID

executable

constraining data

Figure 2: Overview of µCFI. The µCFI compiler takes the program source

code as input and identifies constraining data. When the binary is executed,

the µCFI monitor performs points-to analysis in an isolated parallel process.

shown in Figure 2. Given the program source code, the compiler

performs static analysis to identify all constraining data (§3.1). It

instruments the program to encode such data as indirect control-

flows for efficient record (§3.2). At the same time, it assigns each

basic block a unique ID and records them in the same way (§3.3).

µCFI compiler generates three outputs: the instrumented binary, the

LLVM IR for points-to analysis, and the mapping from ID to LLVM

IR basic blocks. µCFI monitor works in parallel with the protected

program and oversees the program’s indirect control-flow transfers.

It parses PT trace from the kernel driver to decode basic block

ID (§3.3) and constraining data. With basic block ID, the monitor

identifies executed basic blocks, and performs points-to analysis for

every instruction. With the help of constraining data, the analysis

generates the unique target for each ICT instruction (§3.4). After

each indirect control-flow transfer, the monitor compares the real

target used by the program (recorded in PT trace) with the allowed

target from the points-to analysis (§3.5). If they do not match, the

monitor informs the kernel to terminate the execution to prevent

damage to the system.

3.1 Constraining data identification
As we define in §2.3, constraining data is involved in calculation of

code pointers, but their values cannot be directly inferred from the

execution path. Based on this property, we define a static analysis

procedure in algorithm 1 to find all constraining data in two phases:

first, we collect instructions related to ICT target calculation; second,

we check operands of these instructions to find non-constant values

– such values are constraining data.

In the first phase, we collect all instructions that directly or in-

directly involve function pointer calculation. Direct involvement

means the instruction reads or writes a function pointer. Indirect

involvement means that the instruction prepares the data for direct

involvement, like retrieving the pointer of the function pointer. We

use a recursive approach to identify all such instructions. From line

1 to line 6, our algorithm checks all data types used in the program

to locate sensitive types. A sensitive type is either a function pointer

Algorithm 1: Constraining data identification.

Input: G - program to be protected

Output: constraining data set
TS← ∅ // sensitive type set

1 repeat
2 for typ ∈ Types(G):
3 if typ is function-pointer type: TS← TS ∪ {typ}

4 elif typ is composite type:
5 for sTyp ∈ allTypes(typ):
6 if sTyp ∈ TS: TS← TS ∪ {typ}

until no new sensitive type is found

IS← ∅ // sensitive instruction set

7 repeat
8 for instr ∈ Instructions(G):
9 if instr has type ∈ TS: IS← IS ∪ {instr}

10 elif isLoadInst(instr) or isStoreInst(instr):
11 if value ∈ IS: IS← IS ∪ {pointer}

12 elif isCallInst(instr):
13 if form-arg ∈ IS: IS← IS ∪ {act-arg}

14 if act-arg ∈ IS: IS← IS ∪ {form-arg}

15
until no new sensitive instruction is found

CS← ∅ // constraining data set

16 for instr ∈ IS:
17 for oprnd ∈ Operands(instr):
18 if oprnd < IS and ¬isConstant(oprnd):
19 CS← CS ∪ {oprnd}

type (line 3), or a composite type containing some members whose

type is known to be sensitive (line 4-6). We repeat the search until

no new sensitive type can be found. Then from line 7 to line 15, the

algorithm checks all instructions to identify the sensitive instruc-

tions that either produce a value with a sensitive type (line 9), or

involve the calculation of an already-identified sensitive instruc-

tion. For example, lines 10 and 11 check whether the value read

from or written to the memory has been labeled as sensitive. If so,

it will add the pointer to the sensitive instruction set. We redact

the code to process other type instructions at line 15 for brevity.

In the second phase, the algorithm checks the operands of each

sensitive instruction (line 16-19). Any operand that is neither in the

sensitive instruction set nor a constant value (line 18) is treated as

constraining data and is added to the appropriate set (line 19). The

algorithm returns the set of identified constraining data.

Table 2 shows the result of constraining data identification on

the code in Figure 1. Our analysis finds two sensitive types (i.e.,

function pointer type void (char*)* and function pointer array

type [3 x void (char*)*]), six sensitive instructions and one con-

straining data uid. As uid is neither a sensitive value, nor a constant

in the sensitive instruction: fun = arr[uid], it is constraining data.

3.2 Arbitrary data collection
We design a novel method to efficiently pass any information from

the execution to the monitor. Our method uses software instrumen-

tation to encode any data into control data, and then utilizes Intel

PT to generate the encoded trace efficiently. As we discuss in §2.2,

Table 2: Identifying constraining data from code in Figure 1.

sensitive type

void (char*)*

[3 x void (char*)*]

sensitive instruction

FP arr[3] = {&A, &B, &C};

FP fpt = &D;

FP fun = NULL;

fun = arr[0];

fun = arr[uid];

(*fun)(buf);

constraining data uid

typical PT tracing without our instrumentation cannot achieve the

UCT property due to the lack of non-control information.

µCFI implements two functions, write_data in the protected

program to encode arbitrary data, and read_data in the monitor to

restore data for analysis, as shown in Figure 3. To log an arbitrary

value av, µCFI instruments the program to call write_data with av

as the argument. write_data divides av into several chunks, each

containing N bits (lines 13 and 15). write_data adds a constant base

pointer BASE_ADDR to each chunk to get a new code pointer (line 13)

and uses the new pointer to launch an indirect function call (line 14).

PT will record the new code pointer value into the trace. The base

code pointer points to a special executable area (function allRet)

filled with 2
N

one-byte return instructions (0xc3 for Intel CPU).

Therefore, the indirect call immediately returns and write_data

will process the next chunk (line 12). The µCFI monitor recovers the

encoded value by calling function read_data. read_data reads PT

packets from the trace, and restores the chunk value by subtracting

the base code pointer value BASE_ADDR from the PT packet (line 21).

By accumulating chunk values, read_data gets the encoded data

(line 22). Then the monitor can perform online points-to analysis

with the decoded data. µCFI imposes a small footprint in the data

cache by sharing only a minimal set of constraining data (see §5

for performance and code overhead evaluation).

Security consequence. Readers may worry about that adding

write_data to the protected program introduces another indirect

function call and thus enlarges the attack surface. We clarify that

such instrumentation does not change the program security, as at-

tackers cannot utilize this indirect function call to build any exploit.

In our implementation of write_data, the mask operation on av

at line 13 guarantees that the offset from BASE_ADDR is within the

boundary of the allRet function. The new_ptr variable is stored in

a register, which is out of the attacker’s control. Even if attackers

corrupt the value of av, the execution will merely call a different

ret instruction and return to the same location as a benign call.

Figure 4a shows the instrumented code from Figure 1. Since uid

is constraining data in the instruction at line 14, the compiler inserts

write_data(uid) at line 13 to record it. Consider an example that

passes 0xABBBCCCDDDEEEFFF from the execution to the analysis. Sup-

pose that the special executable region allRet starts from address

0x1000, and that µCFI uses 12-bit value as a chunk. write_data will
trigger 6 indirect function calls, each encoding 12 bits (the last one

encodes 4 bits). Then PT trace will contain the following packets:

{0x1FFF, 0x1EEE, 0x1DDD, 0x1CCC, 0x1BBB, 0x100A}.

1 #define CHUNK_SIZE 12
2 #define CHUNK_MASK ((1 << CHUNK_SIZE) - 1)
3 #define CHUNK_COUNT (((64 - 1) / CHUNK_SIZE) + 1)
4 #define BASE_ADDR ((unsigned long)allRet)
5 typedef void (*FP)();
6 typedef unsigned long u64;
7 void allRet(); // filled with 2^N returns
8 u64 getPTPacket(); // return next PT packet
9

10 void write_data(u64 av) { // write data to PT trace
11 int count = 0;
12 while (count++ < CHUNK_COUNT) {
13 FP new_ptr = (FP)(BASE_ADDR + (av & CHUNK_MASK));
14 (*new_ptr)();
15 av >>= CHUNK_SIZE;
16 }}
17

18 u64 read_data() { // recover data from PT trace
19 int count = 0; u64 av = 0;
20 while (count < CHUNK_COUNT) {
21 u64 chunk = getPTPacket() - BASE_ADDR;
22 av += (chunk << (CHUNK_SIZE * count++));
23 }
24 return av;
25 }

Figure 3: Functions for arbitrary data collection. write_data encodes
the input X into code data and dumps it into PT trace, while read_data

restores the encoded value from the PT trace.

3.3 Efficient control-flow construction
µCFI monitor constructs the dynamic control-flow at LLVM IR-

level from the PT trace so that the analyzer can perform points-to

analysis for every executed IR instruction. However, constructing

IR-level paths incurs the following two challenges. The first one is

the time-consuming parsing of PT traces. Previous work [21, 23]

demonstrates that reconstructing the complete execution path from

the highly-compressed PT trace is computation-intensive. Grif-

fin [23] has to use six extra kernel threads to achieve acceptable

performance. The second challenge is the inconsistency between

the binary-level path and the IR-level path. Due to complicated com-

piler optimizations (e.g., instruction scheduling and loop-invariant

code motion), binary-level control-flow significantly differs from

LLVM IR-level flow. Disabling all optimizations helps mitigate the

inconsistency, but cannot completely solve this problem, and more

importantly, hurts performance.

Our accurate and efficient IR-level control-flow reconstruction

is inspired by three observations. First, regardless of optimizations,

the compilation process always retains the program’s high-level

functionality, including the order of side-effecting operations (e.g.,

memory access and function call). As long as one IR-level control-

flow has the same order of side-effecting operations as the binary-

level control-flow, the analysis on it will be functionally equivalent

to the analysis on an ideal IR-level flow (which exactly matches

the binary-level flow). Second, instructions inside the same basic

block get executed in a fixed order – from the first to the last.

Therefore, we just need the control-flow on IR basic block level.

Third, our points-to analysis does not require a complete control-

flow. It merely requires the execution order of sensitive instructions

(defined in §3.1). Such instructions usually account for a small

portion of the whole program. Therefore, a partial control-flow

covering all sensitive instructions should suffice.

1 void handleReq(int uid,char *input) {
2 write_data(ID1); // BBID ID1
3 FP arr[3] = {&A,&B,&C}; // s-instr
4 FP fpt = &D; // s-instr
5 FP fun = NULL; // s-instr
6 char buf[20];
7 if (uid < 0 || uid > 2) return;
8 if (uid == 0) { === TRACE ===>>
9 write_data(ID2); // BBID ID2
10 fun = arr[0]; // s-instr
11 } else {
12 write_data(ID3); // BBID ID3
13 write_data(uid); // c-data
14 fun = arr[uid]; // s-instr
15 }
16 write_data(ID4); // BBID ID4
17 strcpy(buf, input);
18 (*fun)(buf); // s-instr
19 }

(a) Instrumented program in Figure 1

1 // PTS: global points-to table, initialized with NULL
2 while (true) {
3 int BBID = read_data();
4 switch(BBID) {
5 case ID1: PTS[arr[0]] = A; PTS[arr[1]] = B;
6 PTS[arr[2]] = C; PTS[fpt] = D;
7 break;
8

9 case ID2: PTS[fun] = PTS[arr[0]];
10 break;
11

12 case ID3: int uid = read_data();
13 PTS[fun] = PTS[arr[uid]];
14 break;
15

16 case ID4: int real_target = getPTPacket();
17 if (real_target != PTS[fun]) abort();
18 else continue;
19 }}

(b) Monitor internal

Figure 4: Instrumentation and executionmonitoring of the program in Figure 1. µCFI compiler adds extra instructions (shaded) to record constraining

data (c-data) and basic block IDs into the PT trace. µCFI monitor extracts BBIDs and constraining data from the trace, performs points-to analysis for sensitive

instructions (s-instr), and validates ICT targets.

Our method for constructing IR-level control-flow is as follows.

µCFI compiler identifies LLVM IR basic blocks that have at least

one sensitive instruction, and assigns each a unique ID (referred to

as a BBID). During program instrumentation, the compiler inserts

write_data calls at block entries, taking BBID as the argument.

Once the basic block gets executed, its BBID will be recorded into

the PT trace. µCFI monitor extracts BBID from the PT trace, maps

it to the corresponding LLVM IR-level basic block, and performs

the points-to analysis for each contained sensitive instruction. As

function write_data has side effect, the compiled binary has the

same order of original side-effecting operations as the LLVM IR

between any two consecutive BBID packets. µCFI compiler outputs

a map (ID2BB in Figure 2) for µCFI monitor to translate a BBID

in the PT trace into the corresponding IR basic block. With this

novel method, our PT parser can simply ignore all TNT packets

and focuses on the TIP packets that encode BBIDs (detailed in §5.3).

Figure 4a shows the instrumentation of the code in Figure 1,

represented in C language for clarity. The newly added statements

are highlighted, including 4 calls to write_data to dump BBIDs

and another call to record the constraining data uid. The sensitive

instructions related to ICT target calculation are labeled with “s-

instr”, which the monitor will use for analysis.

3.4 Online points-to analysis
We perform the points-to analysis with the full execution context to

enforce the UCT property. µCFI monitor first extracts a BBID from

the trace through the read_data function. Based on the mapping

from BBID to LLVM IR-level basic block, the monitor locates the

current basic block and performs the points-to analysis for each

contained sensitive instruction. Our analysis maintains a global

points-to table with one entry for each program variable. To process

one sensitive instruction, the analysis simply queries the points-

to table to retrieve the target of the source operand and uses it

to update the entry of the destination operand according to the

semantics of the instruction. Figure 4b illustrates the monitoring

code for the example in Figure 1 in C format. Before the analysis

loop, the code initializes the global points-to table PTS with NULL

targets. Inside the loop, it retrieves a BBID (line 3) and performs the

analysis (line 5-18). For example, if the BBID is ID2, the code will

find the target of arr[0] from the table PTS and use it to update the

entry for fun. When the BBID is ID3, the code retrieves the concrete

value of the constraining data uid and then updates the entry for

fun accordingly. Based on the instrumentation in Figure 4a, uid is

logged immediately after ID3 so the code at line 12 of Figure 4b will

get the correct value.

The µCFImonitor performs its analysis in amemory-safemanner

so that the results are correct in spite of any memory corruptions

in the execution process due to spatial memory errors (e.g., buffer

overflow) or temporal memory errors (e.g., use-after-free). Unlike

the execution process, our analysis represents each object as a Node

object and each pointer as a (Node,offset) pair. The first element of

the pair indicates the object pointed by the pointer, and the second

element is the distance from the object start to the pointed location.

We use this representation to create shadow objects in the monitor

and maintain their points-to information. The (Node,offset) repre-

sentation allows us to implement a relaxed model of memory safety

under the “infinite spacing” definition [31]. This mode has two

properties: 1) there is no access to undefined memory; 2) memory

regions are allocated infinitely far apart. The first property rules out

memory errors like use-after-free and uninitialized memory access,

as each pointer (A,x) has an attribute to indicate its status (e.g.,

allocated, freed). The second property rules out buffer overflows.

Since data objects under our analysis are allocated from an infinite

object space, writing to a Node A with an out-of-bound offset x will

have no effect to other nodes, even though in the real execution

the address corresponding to the pointer (A,x) could be the same

address as some other pointer (B,y).

3.5 ICT target validation
When the analysis reaches an ICT instruction, the µCFI monitor

queries the points-to table to get the unique allowed target calcu-

lated by the points-to analysis. It then retrieves the TIP packet from

PT to find the real target used in the execution. If they mismatch,

the monitor concludes that memory corruption occurred and ter-

minates the protected program. In the strongest security policy, the

monitor would block the execution after each ICT instruction to

validate the target. However, frequent suspensions introduce an un-

acceptably high performance overhead. Therefore, µCFI performs

CFI checks in parallel with the execution and only suspends the

execution at critical system calls. It waits for the validation logic to

finish checking all indirect control-flow transfers, and then resumes

the execution if no CFI violations are detected. We consider the fol-

lowing system calls to be security-sensitive, similar to many other

security systems [15, 21, 50, 61]: mmap, mremap, remap_file_pages,

mprotect, execve, execveat, sendmsg, sendmmsg, sendto, and write.

µCFI focuses on determining the unique target for each invoca-

tion of each ICT instruction. Attackers may corrupt the constraining

data before it is recorded by PT, as we do not enforce data integrity.

In this case, our analysis may derive the wrong ICT target and thus

miss an attack. However, malicious corruption of constraining data

falls into the category of non-control data attacks [14, 32] and is

thus out of the scope of this work.

4 IMPLEMENTATION
We implement a prototype of µCFI on x86_64 system with 6010

source lines of code for the program compiler and the execution

monitor. We choose x86_64 system as it is widely used and long-

term supported. However, our idea of enforcing the UCT property

is general and applicable to similar systems, like x86.

Our compiler is built on top of LLVM 3.6, with a LLVM pass for

IR-level instrumentation and a set of updates to the X86 backend for

assembly-level instrumentation. The LLVM pass performs the con-

straining data identification and encoding, and the BBID encoding,

as we discuss in Section §3. The updated X86 backend helps achieve

trace size reduction and shadow stack protection, which we will

discuss in this section. We implement the monitor as one root user

process, which makes it suitable for protecting non-root processes.

However, this is only a limitation of the current implementation

and not the overall design, which can have a kernel monitor or ad-

ditional protection mechanisms (e.g., SELinux). It uses two threads,

one for PT trace parsing and another for points-to analysis and

CFI validation. We use a modified version of the PT driver from

Griffin [24] for trace management, in which we write the trace

into per-thread pseudo-files and set appropriate permissions for

our user-space µCFI monitor to read it. Next we present several

implementation details of the µCFI system, including efforts for

trace reduction, integration with shadow stack, and a practical type

analyzer for the points-to analysis.

Trace reduction. PT allows users to specify the traced code range

of a particular program, and only generates packets when the pro-

gram executes inside the traced range. To utilize this feature to

minimize the trace size, we perform program instrumentation to

redirect all necessary packets into one dedicated code range. Specif-

ically, we implement a function iCall to realize indirect function

calls, and a function oneRet to achieve function returns. µCFI com-

piler replaces each indirect function call in the program with a

direct call to iCall, with the original function pointer as the first

argument. iCall contains one indirect jump instruction that goes

to the address specified in the argument. µCFI replaces each ret

instruction with a direct jump to the oneRet function, which con-

tains one ret instruction to perform function return. During the

execution, we configure the trace range to cover only oneRet and

iCall, which is 48 bytes (8 for instruction and 40 for padding). In

this way, we avoid all TNT packets that usually dominate PT traces.

We show that our trace reduction significantly reduces the size and

helps mitigate the performance overhead of parsing in Section §5.3.

Integration with shadow stack. To demonstrate the compatibil-

ity of µCFI with existing backward-edge CFI solutions, we imple-

ment a parallel shadow stack in µCFI compiler [17]. Parallel shadow

stack saves return addresses in a different stack, but with a fixed

(optionally randomized) offset from the original location. Upon

function return, it compares the two versions of the return address

to detect attacks, or overwrites the one on the real stack with the

shadowed copy to disable attacks. Our implementation of parallel

shadow stack contains a patch to LLVM X86 backend, and an ELF

constructor function. The former inserts two assembly instructions

into each function, one at the function entry for saving the return

address to the shadow stack, and another before the ret instruction

for bringing the shadow copy back. ELF constructor functions are

invoked by the binary loader before giving control to the program

code, which we use to set up the shadow stack and create guard

pages between two stacks. We evaluate it with µCFI in Section §5.4.

Lazy type analysis. Type flattening is the technique of represent-

ing a composite type as basic types [21, 30, 38]. Our points-to

analysis requires type flattening to represent an object as a set of

(Node,offset) pairs, each representing a basic-type element. The

common way to flatten a type is to recursively replace its element

types with their definitions until all elements have basic types. How-

ever, this method requires accurate type information during the

object allocation, which may not be available in highly optimized

LLVM IR. We propose lazy flattening to expand an object when it

is accessed at runtime. During the object allocation, we represent it

as an empty set. When it is accessed through a pointer (Node,x), we

know that at offset x the object has an element with a particular

type, and will update the object representation accordingly. There-

fore, lazy flattening tolerates the type missing problem. However, it

may slow down the analysis due to the dynamic type analysis. µCFI
uses a hybrid solution: we flatten an object as much as possible

based on the type information during its allocation, and use lazy

type flattening to address the type missing problem.

5 EVALUATION
Weperform empirical evaluations to answer the following questions

regarding µCFI’s security and performance:

Q1. can µCFI enforce the unique code target property?
Q2. can µCFI prevent real-world advanced attacks?

Q3. what is the cost of using µCFI for protection?
Q4. can µCFI work well with backward CFI solutions?

Benchmarks. We use µCFI to protect 14 SPEC CPU2006 bench-

marks and 2 real-world applications, the nginx web server and the

vsftpd file server, and measure the allowed target number among

all executed ICT instructions (Q1). We also measure the overhead

of µCFI on these benchmarks and applications, including execution

time, memory usage, and code size (Q3). We collect 5 publicly avail-

able control-hijacking attacks against 4 vulnerable applications, 1

Table 3: Evaluation result of µCFI on SPEC CPU2006, nginx and vsftpd. We measure the number of allowed targets for all ICT instructions in

Allowed Target #. We report the overhead introduced by µCFI regarding time, memory, and code size; instru only covers code instrumentation; +monitor also

considers the µCFI monitoring; +stack integrates the parallel shadow stack. Other columns show the number of PT packets for BBID, return and constraining

data. – means no function pointer. Gray rows indicate C++ benchmarks. We calculate an extra average, excluding benchmarks without any ICT instruction.

kilo- Allowed Target # Time Overhead (%) Mem vCode PT Packet #

sLOC µCFI w/o c-data instru +monitor +stack PittyPat (%) (%) BBID Ret c-data

perlbench 128.2 1 1∼1.8e19 13.79 49.67 47.63 47.3 4.95 32.13 130M 18M 17M

bzip2 5.7 1 1 0.70 1.06 1.82 17.7 0.25 5.12 439K 211K 0

mcf 1.6 – – 0.22 -0.82 0.73 4.3 0.04 0.29 0 0 0

milc 9.6 1 1 0.56 0.52 1.25 1.8 0.56 0.14 498K 9 0

namd 3.9 1 1 0.07 0.24 -0.01 28.8 0.13 0.60 25K 12K 14K

gobmk 157.7 1 1∼1.8e19 4.96 8.55 18.63 4.0 0.00 0.54 504M 19M 34M

soplex 28.3 1 1 0.11 3.95 3.37 27.5 0.46 13.77 10M 5M 501K

hmmer 20.7 1 1 1.25 1.29 0.78 20.2 1.70 0.24 9 2 0

sjeng 10.5 1 7 4.07 10.56 18.36 6.7 0.04 0.18 39M 8M 30M

libquantum 2.6 – – 0.33 0.00 -1.64 14.1 1.73 0.09 0 0 0

h264ref 36.1 1 1∼1200 6.53 24.32 35.14 11.8 0.76 2.68 21M 553K 460K

lbm 0.9 – – 0.05 0.00 -0.02 0.7 0.01 0.28 0 0 0

astar 4.3 1 1 4.00 10.09 13.97 22.5 0.57 0.32 1G 7M 0

sphinx 13.1 1 1 1.09 0.86 0.03 16.0 0.19 0.17 8K 1K 0

Average all above 2.65 7.88 9.95 17.95 0.81 4.04

w/o mcf, libq & lbm 3.38 10.10 12.74 18.57 0.87 5.08

GeoMean 0.69 1.36 1.58 10.48 0.24 0.50

Variance 0.15 1.92 2.32 1.72 0.02 0.79

nginx (/req) 103.4 1 1∼6.2e6 0.46 4.05 4.05 11. 9 5.61 20.25 11K 2K 7K

vsftpd (/req) 16.5 1 1∼13 1.13 0.75 0.83 n/a 4.77 17.29 10K 10K 603

proof of concept COOP attack, and synthesize 2 advanced attacks

that bypass existing CFI implementations. Then we check whether

µCFI can prevent such attacks (Q2). We integrate one represen-

tative shadow stack, the parallel shadow stack [17], to check the

compatibility of µCFI with backward-edge CFI solutions (Q4). We

evaluate the correctness and overhead of the combined protection.

Due to the data loss problem of Intel PT, we cannot perform

end-to-end evaluation for some SPEC benchmarks. We check this

issue in §6.3 and discuss the missed benchmarks in §6.4.

Setup.We perform our evaluation on a 64-bit Ubuntu 16.04 system,

equipped with an 8-core Intel i7-7740X CPU (4.30GHz frequency)

and 32 GB RAM. We compile each program in two steps. First, we

use wllvm [52] to generate the baseline binary and the LLVM IR

representation of the whole program. Second, we use µCFI compiler

to instrument the IR and generate the protected executable. Both

compilations take default optimization levels and options, like, O2

for SPEC and O1 for nginx and vsftpd. We use the provided train

data sets to evaluate SPEC benchmarks. For nginx and vsftpd, we set

up the server on our evaluation environment, and request files with

different size from another machine in the same local network. We

request each file for 1000 times to avoid accidental deviations. To

measure the overhead, we launch the protected execution together

with the monitor, and count the time till all processes exit, including

the protected execution, the monitor and their child processes.

Result summary. Table 3 and Table 4 summarize our evaluation

results. µCFI successfully enforces the UCT property for tested

programs as it only allows one valid target for all indirect control-

flow transfers (Q1). µCFI introduces 7.88% runtime overhead for

evaluated SPEC benchmarks on average, 4.05% runtime overhead

for nginx and less than 1% overhead for vsftpd (Q2). This means that

µCFI can efficiently protect these programs with a strong security

guarantee. All attacks, including the real-world attacks, the COOP

proof of concept attack and the synthesized attacks, are blocked

by µCFI at runtime (Q3). Programs compiled with µCFI and the

shadow stack work well. The combined protection introduces extra

2.07% overhead to SPEC benchmarks, and negligible extra overhead

to nginx and vsftpd (Q4).

5.1 Enforcing UCT property
µCFI successfully enforces the unique code target property for

evaluated SPEC CPU2006 benchmarks, nginx and vsftpd, as shown

in the uCFI column (under Allowed target #) of Table 3, in which

all ICT instructions have one and only one allowed target. SPEC

benchmarks mcf, libquantum and lbm do not have ICT instructions

in their LLVM IR, so we skip their numbers in the column.

5.1.1 Necessity of constraining data. To understand the advantage

of µCFI, we emulate the analysis without constraining data (like in

PittyPat [21]) to estimate the number of allowed targets for ICT

instructions. Specifically, we associate each sensitive data with a

counter variable to represent the number of its possible sources.

This value is initialized as 1, and gets propagated among sensitive

instructions. If one instruction uses constraining data to derive the

destination from the source, we multiply the source counter by the

maximum value of the constraining data and assign the result to the

destination counter. The multiplication represents the inevitable

overestimation the analysis has to make to conservatively permit all

possible targets. We infer the maximum value of the constraining

data from static analysis if possible (e.g., static array size); otherwise

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 6064

I
C
T
i
n
s
t
r
u
c
t
i
o
n
s

gobmk: log2(target #)

any input w/ c-data

inputs w/o c-data

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0 2 4 6 8 10 11

h264ref: log2(target #)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 23

nginx: log2(target #)

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7

vsftpd: log2(target #)

w/ c-data

w/o c-data

Figure 5: Cumulative distribution of allowed target number in h264ref, nginx, vsftpd and gobmk. X-axis shows the binary logarithm of allowed

target numbers. Executions with constraining data always have unique targets, and therefore produce the horizontal line on the top.

1 struct { void (*mapping)(...); } SyntaxElement;
2 struct { SyntaxElement MB_SyntaxElements[1200]; } *img;
3 int writeMBLayer (int rdopt) {
4 /* index is the constraining data to determine currSE */
5 SyntaxElement *currSE = &img->MB_SyntaxElements[index];
6 writeSyntaxElement_UVLC(currSE, ...);
7 }
8 int writeSyntaxElement_UVLC(SyntaxElement *se, ...) {
9 se->mapping(se->value1, ...);
10 }

Figure 6: Simplified h264ref code snippet that retrieves a function

pointer from a large structure array.

we use its concrete value at runtime as an under-approximation.

Finally, the counter value of the code pointer is the number of

allowed targets for the ICT instruction. Note that our goal here is

not to get an accurate number of unique allowed targets. Instead, we

mainly use the counter value to estimate the attacker’s flexibility

on building control-hijacking attacks.

Column (w/o c-data) shows our estimation results, in which 4

SPEC benchmarks and both real world applications will permit sig-

nificantly more targets if the analysis does not use constraining data.

sjeng always permits 7 targets for its only ICT instruction, while

another 5 applications allow targets varying from small counts (e.g.,

2) to the maximum integer (i.e., ULONG_MAX on Linux). We draw the

distribution of allowed target number for gobmk, h264ref, nginx

and vsftpd in Figure 5, where the X-axis shows the binary loga-

rithm of the allowed target number. The distribution of allowed

target numbers for gobmk varies from input to input, in which

ICTs with more than one target range from 5% to 35%. Most ICTs

have less than 64 (2
6
) targets, but some may permit 2

64
targets.

For h264ref, 99.7% of ICTs have only one target. Other ICTs have

either 400 targets (0.15%) or 1200 targets (0.15%). Requesting a 1KB

file from nginx can trigger ICTs with 2
23

targets, while ICTs with

one target only account for 45%. The allowed target numbers for

vsftpd is simpler, like one target (55%) or two (40%), and a few with

128 targets. Our estimation shows that without constraining data,

attackers have substantial flexibility to divert the control flow, even

if the victim is protected with known CFI solutions. For soplex and

namd, µCFI monitor detects operations on constraining data (the

last column on Table 3), but no ICT instructions use the operation

results. Therefore, the analysis without constraining data also en-

forces one target for all invoked ICT instructions. However, we find

execution paths in these programs that really use constraining data

for ICT instructions, where the analysis has to use constraining

data to achieve the UCT property.

1 typedef int (*autohelper_fn_ptr)(...);
2 struct pattern { autohelper_fn_ptr autohelper; };
3 struct matched_pattern_data { struct pattern *pattern; };
4 struct matched_patterns_list_data
5 { struct matched_pattern_data *pattern_list; };
6 int get_next_move_from_list(
7 struct matched_patterns_list_data *list, ...) {
8 for (...) {
9 struct matched_pattern_data tmp;
10 tmp = list->pattern_list[index1];
11 list->pattern_list[index2] = tmp;
12

13 tmp = list->pattern_list[index3];
14 check_pattern_hard(..., tmp.pattern, ...);
15 }}
16 int check_pattern_hard(..., struct pattern *pattern, ...) {
17 pattern->autohelper(...);
18 }

Figure 7: Simplified gobmk code snippet that cascades memory access

with constraining data.

Case study 1: reading code pointer from a huge table. h264ref
permits up to 1200 targets if the constraining data is not available.

We inspect its execution trace and figure out that the large num-

ber is caused by reading a code pointer from a huge table with a

variable index, as shown in Figure 6. Structure ImageParameters

contains an array of 1200 SyntaxElement instances, while structure

SyntaxElement has a function pointer mapping. h264ref gets the

structure pointer currSE from that array (line 5), and uses the func-

tion pointer in the pointed structure for an indirect function call

(line 9). The index used to retrieve the structure pointer is constrain-

ing data, without which the analysis has to conservatively take all

1200 elements as the potentially retrieved pointer. When currSE

is dereferenced to get the function pointer, there are up to 1200

candidate locations, leading to the large allowed target number.

Case study 2: cascading access. gobmk has the largest allowed

target number (the maximum 8-byte value), due to the cascading of

constraining data. Specifically, one value derived from constraining

data is used to calculate a second value together with other con-

straining data, in which the counter is multiplied by two maximum

values. Figure 7 shows one example of cascaded access, in which

index1, index2, and index3 are constraining data. Here we use the

concrete value to estimate the maximum constraining data. At line

10, tmp is retrieved from pattern_listwith index1, and its counter

will be multiplied by index1. When tmp is saved into the list, each

list element may have counter*index1 sources. Then after another

iteration, each element will have counter*index1*index1 sources.

In this way, the counter value increases quickly. When tmp is used

at line 17, the allowed target number is very large.

Table 4: Real-world exploits prevented by µCFI.

Prog CVE Type Exploit Blocked?

ffmpeg

2016-10191 heap overflow [2] ✓
2016-10190 heap overflow [6] ✓

php 2015-8617 format string [20] ✓
nginx 2013-2028 stack overflow [63] ✓
sudo 2012-0809 format string [22] ✓

µCFI guarantees the UCT property regardless of large tables

and cascading accesses, as it uses constraining data to get a unique

target for each node, avoiding counter increase from the beginning.

5.2 Preventing attacks
We evaluate the effectiveness of µCFI at preventing real-world ex-

ploits, recently proposed advanced attacks, and synthesized attacks

that bypass known defenses (including PittyPat).

We first collect 5 publicly available exploits against 4 vulnera-

ble programs as listed in Table 4. ffmpeg is a popular multimedia

framework for encoding and decoding videos and audios. It is vul-

nerable to two heap-based buffer overflow bugs, CVE-2016-10190

and CVE-2016-10191, which are exploitable to attackers to con-

struct control-hijacking attacks. php is the interpreter of the PHP

language, while sudo is a utility program on Unix-like systems

for users to run programs with the privilege of other users. Both

of them are vulnerable to format string vulnerabilities, i.e, CVE-

2015-8617 for php and CVE-2012-0809 for sudo. As this type of

vulnerability is highly exploitable, attackers simply launch control-

hijacking attacks by corrupting code pointers. Nginx web server

has a stack-based buffer overflow (CVE-2013-2028). We modify the

exploit from [53] to carefully overwrite return addresses with their

original values, and finally corrupt a sensitive structure pointer on

the stack to launch forward-edge attacks. µCFI successfully detects

all these CFI violations and halts their executions.

We also apply µCFI to protect the program introduced in Pit-

tyPat [21] that is vulnerable to COOP attack [55]. COOP is a

Turing-complete attack method via fake object construction. As it

corrupts forward-edge control-flow transfers to function entries,

COOP poses a big challenge to coarse-grained CFIs. µCFI prevents
COOP attacks by protecting all control data, which allows it to ac-

curately track the function pointers in memory. When the program

is fed a malicious input, µCFI successfully discriminates between

legitimate and counterfeit objects to detect the attack.

At last, we evaluate µCFI on synthesized attacks that can bypass

analysis without constraining data, like in PittyPat. We modify the

source code of sjeng and gobmk to introduce two bugs, and build

attacks to corrupt function pointers retrieved from large arrays. As

we demonstrate in §2.2, existing CFI solutions cannot prevent such

attacks because they overestimate all array elements as allowed

targets. µCFI detects the inconsistency between the real target and

the result of our analysis, and thus blocks both attacks.

5.3 Overhead measurement
Table 3 summarizes the overhead of µCFI in terms of execution

time, peak memory use and compiled code size.

Performance overhead. On average, µCFI introduces 7.88% exe-

cution overhead to evaluated SPEC benchmarks. We break down

0

20

40

60

80

100

b
z
ip
2

m
c
f

m
il
c

n
a
m
d

g
o
b
m
k

s
o
p
le
x

h
m
m
e
r

s
je
n
g

li
b
q
u
a
n
tu
m

h
2
6
4
r
e
f

lb
m

a
s
ta
r

s
p
h
in
x
3

n
g
in
x

v
s
ft
p
d

P
a
c
k
e
t
p
e
r
c
e
n
t
a
g
e
(
%
)

TNT

TIP

BBID

Return

c-data

Figure 8: Trace reduction. Complete path construction uses TNT and TIP

packets, while µCFI only requires BBID, Return and c-data.

the overhead to two components: that by instrumentation for ef-

ficient tracing and that by synchronization for CFI validation. As

shown in the instru column under Time Overhead in Table 3, code

instrumentation leads to less than 3% overhead, while the +monior

column shows that monitoring further increases overhead by 5.23%.

The overall overhead can be less than the instrumentation over-

head. We believe this is due to non-determinism like caching and

paging. We also calculate the average overhead for SPEC by exclud-

ing benchmarks without any ICT instructions, specifically, milc,

libquantum and lbm. The result shows that µCFI still performs

efficiently, introducing 10.10% overhead.

For real-world applications, µCFI introduces 4.05% overhead to

nginx, and 0.75% overhead to vsftpd for requesting 1K files. We

also measure the request for larger files, and find the overhead is

negligible. Requesting large files invokes more write system call,

and thus triggers more synchronizations between the monitor and

the protected execution. However, as there is no pending CFI checks

between system calls, µCFI immediately resumes the execution. In

fact, such heavy I/O operations amortize the instrumentation in

the main program, and thus lead to less overhead.

µCFI has less overhead than PittyPat (17.9% for SPEC and 11.9%

for nginx) for two reasons. First, enforcing the UCT property makes

our analysis more efficient. For example, for an assignment op-

eration, the analysis copies the target set from the source to the

destination. µCFI only copies one target, whereas PittyPat has to

copy a large set (e.g., 1200 targets in h264ref). Second, our method

of path reconstruction avoids generating and parsing the TNT pack-

ets that predominate PT traces. Figure 8 compares the necessary

packets for complete control-path construction (TNT, TIP) against

our partial path construction (BBID, Return, c-data). The TNT pack-

ets account for over 90% of the whole PT trace in most cases. Our

trace size is negligible in comparison.

µCFI introduces relatively higher overhead to some benchmarks,

like 25% for h264ref and 50% for perlbench. We examine the code

of h264ref and find that it performs a large number of indirect

function calls within a small time window, which creates a burden

on the kernel task processing the PT trace. We can address this

problem by allocating more kernel tasks for PT parsing, or moving

our analysis into the kernel space, like in Griffin [23]. Overhead

on perlbench mainly comes from two aspects: high percentage of

sensitive instructions and frequent forking of child processes. About

20% of perlbench instructions are considered sensitive and half of

basic blocks are instrumented for dumping their BBIDs. Further,

perlbench creates 66 child processes with the heavy fork system

call, which triggers the monitor forks in the same way, thus slowing

down the execution. We can reduce the overhead as follows.

Optimization opportunity. We identify a promising direction to

reduce our overhead with the new hardware feature — the PTWrite

instruction from Intel PT. The PTWrite instruction directly writes

user-provided data as a TIP packet into the PT trace. µCFI can uti-

lize this instruction to log BBID and constraining data. Compared

to our write_data function which contains a bunch of instructions,

PTWrite is more compact and thus more efficient. With this instruc-

tion, we can significantly reduce the performance overhead.

Memory overhead. We measure the memory usage of the pro-

tected program and present the results in the Memory Ovrhd column

of Table 3. At 0.81%, the memory increase for SPEC benchmarks is

negligible. For nginx and vsftpd, µCFI introduces less than 6% over-

head. Considering the large amount of memory on contemporary

devices, such increase is acceptable.

Code overhead. µCFI compiler introduces extra code into the pro-

tected binary, including a fixed-size part and a program-dependent

part. The fixed part contains functions for data collection and trace

reduction, which is the same for any program. We allocate about

4MB for the fixed part to support logging constraining data in

the range of [-1024, 4M-1024]. Considering the large code base in

modern programs (e.g., browsers) and advanced memory sharing

techniques (e.g., memory deduplication [29, 41]), this size over-

head is acceptable. Another part of the overhead comes from the

instrumented calls and return redirection, and is shown in the

vCode Ovrhd column of Table 3. µCFI introduces little code over-
head in this part for most SPEC benchmarks (4.04% on average).

For perlbench, the code size overhead is 32.13%. The reason is that

half of its basic blocks contain sensitive instructions and thus are

instrumented with extra calls to write_data to record their BBID.

5.4 Compatibility with shadow stack
We measure the compatibility of µCFI with integrated parallel

shadow stack (PSS) protection. We compile each program with the

µCFI compiler and PSS and measure the execution correctness and

performance overhead. All test programs including SPEC bench-

marks, nginx, and vsftpd, work well with benign inputs, demon-

strating the strong compatibility of µCFI. The overhead of inte-

grating PSS is shown in the +stack column in Table 3. On average,

PSS introduces a 2.07% overhead to evaluated SPEC benchmarks

and negligible overhead to nginx and vsftpd. Although parallel

shadow stack works well with µCFI, we do not claim any con-

tribution nor provide any guarantee on backward-edge CFI. By

showing the compatibility of µCFI with shadow stacks, we clarify

that any alternative solutions with various security guarantees,

like randomization-based SafeStack [36] and hardware-based Intel

CET technique [33], can be integrated with µCFI to provide UCT
property on both directions.

6 DISCUSSION & FUTUREWORK
In this section, we discuss several important topics regarding Intel

PT and µCFI. First, we analyze the security guarantee of µCFI and
the attacks it can prevent. Then we compare µCFI with a closely

related work, code-pointer integrity (CPI) [36]. Next we present

the data-loss problem of Intel PT, and discuss the missed SPEC

benchmarks due to data-loss. At last, we list the future work of

handling the less common but challenging ICTs, like exceptions.

6.1 Security promise by µCFI.
As µCFI monitor asynchronously checks the target of each ICT

instruction after its execution, it is possible that the attack has

been launched for a while before we detect it. However, µCFI still
provides a strong security guarantee as follows. First, attackers can-

not make significant damage through security-critical system calls.

µCFI synchronizes the monitor and the protected execution before

the latter enters the high-privileged kernel space through security-

critical system calls. The synchronization temporarily pauses the

protected execution until the monitor finishes all CFI checks. There-

fore, the monitor verifies the targets of all executed ICT instructions,

and detects any individual unexpected behavior.

Second, attackers cannot clean its attack trace to bypass detection.

Intel PT logs each ICT target (including the corrupted one) into the

kernel space immediately after the instruction’s execution. Without

invoking security-critical system calls, attackers cannot touch the

PT trace. But once they invoke such system calls, the monitor

pauses the execution before entering kernel, checks all executed

ICT instructions with the clean PT trace and detects the attack.

At last, attackers cannot overflow PT trace in kernel to bypass

detection. A smart attacker may keep running ICT instructions

in user-space to generate a huge number of PT packets, aiming

to overflow the PT trace. However, this attack does not work on

µCFI. We set a limit of kernel memory used for PT trace. Once

the limit is hit, µCFI suspends the protected execution until the

monitor completes the checking phase and creates new memory

quota. Since the normal execution usually does not trigger the limit,

we treat frequent limit hit as a hint of attack.

6.2 Security analysis and CPI
Whether µCFI can prevent a concrete attack depends on the type

of the attack-corrupted data. Specifically, (1) attacks corrupting

code addresses (i.e., return address and function pointer) can be

detected and blocked. (2) Attacks corrupting data with no relation-

ship to control-flow can survive. In the case when the corrupted

data indirectly affects the control-flow, µCFI can detect the attack if

(3) the corrupted data is a pointer that affects the control-flow; (4)

otherwise, µCFI cannot detect it. For example, µCFI cannot detect
non-control-attacks [14, 56] because they fall into either case (2),

such as corrupting the user identity variable; or case (4), such as

corrupting the authenticated flag. For real-world control-hijacking

attacks, like the ones in §5.2, which fall into either case (1) or (3),

µCFI can detect and block them.

µCFI prevents the same set of attacks as code-pointer integrity,

which enforces memory safety on control-data to prevent corrup-

tion in the first place. Both works protect the same set of program

data, i.e., the sensitive pointer in CPI, and the union of the sensitive

instruction and the constraining data in this paper. The main dif-

ference is the mechanism used to realize the protection. CPI uses

in-process isolation to prevent low-privileged code from accessing

sensitive data, and checks access boundary in high-privileged code

to avoid corruptions. Instead, µCFI relies on out-of-process monitor

to remove the low-privileged code from the attack surface, and

further leverages an “infinite” memory model to preclude possible

memory errors in the monitor. Regarding implementations, cur-

rently CPI uses code segment to provide isolation on x86 system,

and relies on information hiding to secure the sensitive data on

x86_64 system. We implement µCFI on x86_64 system with process

isolation and Intel PT, and the idea is also applicable on x86 system.

6.3 Reliability of Intel PT
Intel PT has been explored in several works [21, 23, 28] to improve

control-flow integrity. However, we find that PT packets can be

lost at the hardware level. Specifically, some packets are dropped

from the PT trace, even if the software driver faithfully copies every

bit from the hardware buffer. This problem is more severe if one

program generates a large number of PT packets within a short

time window. As µCFI requires all necessary PT packets shown in

their generation order to reconstruct the control flow, any data-loss

renders our protection fail due to missed operations. Originally,

we find this problem in almost all SPEC benchmarks, in which we

generate traces to include all types of packets.

We inspect this problem and identify that TNT packets, which

usually dominate the PT trace, contribute the most to the data-loss

problem. Therefore, we mitigate this problem with novel encoding

techniques to circumvent TNT packets and some others, as we

discuss in §4. Finally, we did not see any packet loss for evaluated

SPEC programs and real-world applications. However, data-loss

problem still exists for some SPEC programs, especially for C++

ones which keep generating a lot of PT packets, like xalancbmk.

We have to skip these benchmarks in our evaluation.

We report the data-loss problem to the corresponding team in In-

tel. They acknowledge this problem, and express supportive attitude

to use PT for security. We believe our work shows the promising

security benefit from complete PT trace, and will help Intel accu-

rately measure the value of fixing the data-loss problem. Although

Intel does not provide a concrete plan of fix, we do observe that

newer generations of Intel CPUs have fewer lost packets on the

same workload. We will keep eyes on Intel’s progress of solving

this problem, and expect a complete fix in the near future.

6.4 Unsupported benchmarks
We skip several SPEC benchmarks in our evaluation due to the data-

loss problem, including gcc, dealII, povray, omnetpp and xalancbmk.

We will evaluate µCFI on these benchmarks once Intel fixes the

data-loss problem, or releases newer productions with minimal

lost data. Among them, C++ benchmarks usually contain more

sensitive data due to the C++ polymorphism, and are likely to have

higher overhead with µCFI. Polymorphism introduces a pointer of

one function pointer table to each object, which is considered as

sensitive data in µCFI. Therefore, µCFI executes more instructions

in the monitor to capture all valid operations on control-data to

enforce the UCT property.

However, we believe the performance number of µCFI on these

benchmarks will be better than that reported in PittyPat, and

will be more efficient than existing memory safety solutions. As

we discuss in §5.3, µCFI takes the same structure as PittyPat to

perform online point-to analysis, but with significantly less PT

packets and accurate (unique) target for each control data (shown

in Figure 8). Therefore, the enforcement by µCFI is more lightweight

and robust. µCFI also performs better than existing memory safety

solutions. For example, Softbound [42], the commonly referred

memory safety solution, introduces about 250% overhead to the

benchmark h264ref, while µCFI only introduces 25% slow down. For

benchmark sjeng, the overhead is about 80% for Softbound, while

only about 18% for µCFI. Therefore, we strongly believe even in

our missed benchmarks, µCFI is likely to be efficient than existing

memory safety solutions.

6.5 Future work
A common challenge for CFI systems is validating control-flow

changes caused by signals [9] and exceptions [55]. Considering that

signal handling and exception handling are OS-dependent, we leave

them as future work. µCFI can be extended to handle these cases,

as Intel PT by default records the targets of signals and exceptions

in FUP packets. We can label the structures used to register and

store handler data as constraining data, and record them with our

technique for arbitrary data collection. In the monitor, we can save

these data structures, and use them to check with the FUP packets to

validate the control-flow transfers caused by signals and exceptions.

Another challenge for CFI systems is validating the edges in dy-

namically loaded code (e.g., shared libraries). Other works address

this problem using modular CFI [46, 47]. We choose to focus on

protecting the main binary in µCFI, and model a set of well-known

library functions to guarantee the correctness of the points-to anal-

ysis, like memcpy and malloc. Our techniques also apply to libraries,

and we leave the stitching of our models at runtime to future work.

7 RELATEDWORK
Control-flow attacks are the predominate method to exploit mem-

ory errors. The attack method has evolved from code injection

to code reuse, in which code snippets in the victim program are

chained to achieve expressive attacks, like ret2libc [45] and return-

oriented programming (ROP) [7–9, 13, 56, 57]. Researchers have pro-

posed randomization techniques to mitigate code-reuse attacks [4,

5, 16, 19, 39, 40, 64]. For example, address space layout randomiza-

tion (ASLR) is widely deployed in modern operating systems [51].

However, recent works [26, 27, 49] demonstrate that randomization-

based solutions have inherent weaknesses and can still be bypassed.

CFI is a principled solution to prevent control-hijacking attacks [1].

The idea is to statically draw a control-flow graph (CFG) to define

all legitimate control-flow transfers and dynamically check the exe-

cution against the CFG. µCFI follows the idea of CFI, and proposes

online points-to analysis with full execution context to achieve the

strongest CFI enforcement.

Coarse-grained CFI solutions, like CCFIR [68] and BinCFI [69],

achieve strong compatibility and good performance, but fail to

provide strong security guarantee to eliminate all control-hijacking

attacks [10, 25, 55]. Fine-grained CFI, like type-based CFI [46, 59,

62], significantly reduces the number of allowed targets. However,

none of them can guarantee the UCT property, due to the missing

execution context. Our system µCFI is the first work that guarantees
the UCT property while introducing small performance overhead.

Several hardware features are used to provide efficient CFI en-

forcement, like branch tracing store [65], and last branch record [15,

50]. However, following works [11, 25] have demonstrated attacks

against these efficient CFI solutions. Recent works [23, 28] use PT

to record the complete execution path and validate the ICT with a

static control-flow graph. However, these solutions are best-effort

and over-approximate the set of valid targets due to the limitation

of static analysis. PittyPat [21] performs online points-to analysis

using the PT trace, but fails to enforce the UCT property due to the

missing constraining data. µCFI utilizes full execution context to

perform the points-to analysis, and thus is able to get the unique

code target for each invocation of each ICT instruction.

Memory safety detects memory errors at runtime and thus pre-

vents subsequent exploitation. Spatial memory safety guarantees

that each memory access is within the expected boundary and

prevents errors like buffer overflow and NULL-pointer derefer-

ence [3, 35, 42, 44, 67], while temporal memory safety detects access

violations due to incorrect memory release and reuse, like user-

after-free [18, 37, 60, 66]. Unfortunately, memory safety solutions

introduce high overhead (usually over 100%) and make runtime

hardening impractical. µCFI is a lightweight solution focusing on

control data for better performance.

8 CONCLUSION
In this paper, we present the Unique Code Target (UCT) property

for CFI, which guarantees that for each invocation of any indirect

control-transfer instruction, there is one and only one allowed

target. A CFI implementation enforcing the UCT property can stop

all control-flow hijacking attacks that compromise control data. We

prototype the first CFI system that satisfies the UCT property. Our

system, µCFI, combines static program instrumentation with online

points-to analysis to infer the unique code target. The evaluation

shows that µCFI successfully enforces the UCT property for all

protected programs, and stops real-world and advanced control-

hijacking attacks while incurring less than 10% overhead.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their helpful feedback.

This research was supported in part by the DARPA Transparent

Computing program under contract DARPA-15-15-TC-FP006, by

the ONR under grants N00014-17-1-2895, N00014-15-1-2162 and

N00014-18-1-2662. Any opinions, findings, conclusions or recom-

mendations expressed in this material are those of the authors and

do not necessarily reflect the views of DARPA and ONR.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-

cations Security.

[2] Ali Juanquan. 2017. FFmpeg CVE-2016-10191. http://www.freebuf.com/vuls/

148389.html.

[3] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. 1994. Efficient Detection

of All Pointer and Array Access Errors. In Proceedings of the ACM SIGPLAN 1994

Conference on Programming Language Design and Implementation.

[4] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-grained

Memory Randomization Practical by Allowing Code Sharing. In Proceedings of

the 23rd USENIX Conference on Security Symposium.

[5] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed

Okhravi. 2015. Timely Rerandomization for Mitigating Memory Disclosures. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications

Security.

[6] bird. 2017. CVE-2016-10190 FFmpeg Heap Overflow. https://security.tencent.

com/index.php/blog/msg/116.

[7] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.

2014. Hacking Blind. In Proceedings of the 35th IEEE Symposium on Security and

Privacy.

[8] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-

Oriented Programming: A New Class of Code-reuse Attack. In Proceedings of the

6th ACM Symposium on Information, Computer and Communications Security.

[9] Erik Bosman and Herbert Bos. 2014. Framing Signals - A Return to Portable

Shellcode. In Proceedings of the 35th IEEE Symposium on Security and Privacy.

[10] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.

Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-

tegrity. In Proceedings of the 24th USENIX Security Symposium.

[11] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking

Modern Defenses. In Proceedings of the 23rd USENIX Conference on Security

Symposium.

[12] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software by

Enforcing Data-Flow Integrity. In Proceedings of the 7th Symposium on Operating

Systems Design and Implementation.

[13] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,

Hovav Shacham, and Marcel Winandy. 2010. Return-Oriented Programming

Without Returns. In Proceedings of the 17th ACM Conference on Computer and

Communications Security.

[14] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.

2005. Non-Control-Data Attacks Are Realistic Threats. In Proceedings of the 14th

USENIX Security Symposium.

[15] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H Deng.

2014. ROPecker: A generic and practical approach for defending against ROP

attacks. In Proceedings of the 21st Annual Network and Distributed System Security

Symposium.

[16] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:

Practical Code Randomization Resilient to Memory Disclosure. In Proceedings of

the 36th IEEE Symposium on Security and Privacy.

[17] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The Performance

Cost of Shadow Stacks and Stack Canaries. In Proceedings of the 10th ACM

Symposium on Information, Computer and Communications Security.

[18] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A Practical

Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In Proceedings

of the 26th USENIX Security Symposium.

[19] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and

Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-Time)

Return-Oriented Programming. In Proceedings of the 22nd Annual Network and

Distributed System Security Symposium.

[20] dctf. 2017. sploit.php. https://github.com/dctf/exploits/blob/master/

CVE-2015-8617/sploit.php.

[21] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke

Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In Proceedings

of the 26th USENIX Security Symposium.

[22] Aeon Flux. 2013. sudo 1.8.0 < 1.8.3p1 - ’sudo_debug’ glibc FORTIFY_SOURCE

Bypass + Privilege Escalation. https://www.exploit-db.com/exploits/25134/.

[23] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Con-

trol Flows Using Intel Processor Trace. In Proceedings of the 22nd International

Conference on Architectural Support for Programming Languages and Operating

Systems.

[24] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin Trace. https://github.

com/TJAndHisStudents/Griffin-Trace.

[25] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis. 2014.

Out of Control: Overcoming Control-Flow Integrity. In Proceedings of the 35th

IEEE Symposium on Security and Privacy.

[26] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios

Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining Informa-

tion Hiding (and What to Do about It). In Proceedings of the 25th USENIX Security

Symposium.

[27] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.

ASLR on the Line: Practical Cache Attacks on the MMU. In Proceedings of the

24th Annual Network and Distributed System Security Symposium.

[28] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI:

Transparent Backward-Edge Control Flow Violation Detection Using Intel Pro-

cessor Trace. In Proceedings of the 7th ACM on Conference on Data and Application

Security and Privacy.

http://www.freebuf.com/vuls/148389.html
http://www.freebuf.com/vuls/148389.html
https://security.tencent.com/index.php/blog/msg/116
https://security.tencent.com/index.php/blog/msg/116
https://github.com/dctf/exploits/blob/master/CVE-2015-8617/sploit.php
https://github.com/dctf/exploits/blob/master/CVE-2015-8617/sploit.php
https://www.exploit-db.com/exploits/25134/
https://github.com/TJAndHisStudents/Griffin-Trace
https://github.com/TJAndHisStudents/Griffin-Trace

[29] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, and John C. S. Lui. 2017. SmartMD:

A High Performance Deduplication Engine with Mixed Pages. In Proceedings of

the 2017 USENIX Annual Technical Conference.

[30] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Her-

bert Bos, and Erik van der Kouwe. 2016. TypeSan: Practical Type Confusion

Detection. In Proceedings of the 23rd ACM SIGSAC Conference on Computer and

Communications Security.

[31] Michael Hicks. 2014. What is memory safety? http://www.pl-enthusiast.net/

2014/07/21/memory-safety/.

[32] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness of

Non-control Data Attacks. In Proceedings of the 37th IEEE Symposium on Security

and Privacy.

[33] Intel. 2016. Intel Releases New Technology Specifications to Protect

Against ROP attacks. https://software.intel.com/en-us/blogs/2016/06/09/

intel-release-new-technology-specifications-protect-rop-attacks.

[34] Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Por-

tokalidis. 2013. ShadowReplica: Efficient Parallelization of Dynamic Data Flow

Tracking. In Proceedings of the 20th ACM SIGSAC Conference on Computer and

Communications Security.

[35] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,

and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In Proceedings of the

USENIX Annual Technical Conference.

[36] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,

and Dawn Song. 2014. Code-pointer Integrity. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation.

[37] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long

Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers

Nullification. In Proceedings of the 22nd Annual Network and Distributed System

Security Symposium.

[38] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type

Casting Verification: Stopping an Emerging Attack Vector. In Proceedings of the

24th USENIX Security Symposium.

[39] Kangjie Lu, Stefan Nürnberger, Michael Backes, and Wenke Lee. 2016. How to

Make ASLR Win the Clone Wars: Runtime Re-Randomization. In Proceedings of

the 23rd Annual Network and Distributed System Security Symposium.

[40] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim, and

Wenke Lee. 2015. ASLR-Guard: Stopping Address Space Leakage for Code Reuse

Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security.

[41] Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and Frank

Bellosa. 2013. XLH: More Effective Memory Deduplication Scanners Through

Cross-layer Hints. In Proceedings of the 2013 USENIX Annual Technical Conference.

[42] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.

In Proceedings of the 30th ACM SIG-PLAN Conference on Programming Language

Design and Implementation.

[43] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

2010. CETS: Compiler Enforced Temporal Safety for C. In Proceedings of the 9th

International Symposium on Memory Management.

[44] George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: Type-safe

Retrofitting of Legacy Code. In Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages.

[45] Nergal. 2001. The Advanced Return-into-lib(c) Exploits. http://phrack.org/issues/

58/4.html.

[46] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In Proceedings

of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation.

[47] Ben Niu and Gang Tan. 2014. RockJIT: Securing just-in-time compilation using

modular control-flow integrity. In Proceedings of the 21st ACM SIGSAC Conference

on Computer and Communications Security.

[48] Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security.

[49] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. 2016. Poking Holes in Information Hiding. In Proceedings of the 25th

USENIX Security Symposium.

[50] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2013. Trans-

parent ROP Exploit Mitigation Using Indirect Branch Tracing. In Proceedings of

the 22nd USENIX Security Symposium.

[51] PaX Team. 2003. PaX Address Space Layout Randomization (ASLR). http://pax.

grsecurity.net/docs/aslr.txt.

[52] Tristan Ravitch. 2017. Whole Program LLVM. https://github.com/travitch/

whole-program-llvm.

[53] Karlsruhe Institute of Technology. 2016. Exploitation Training – CVE-2013-2028:

Nginx Stack Based Buffer Overflow . https://github.com/kitctf/nginxpwn.

[54] Tencent Xuanwu Lab. 2016. Return Flow Guard. http://xlab.tencent.com/en/

2016/11/02/return-flow-guard/.

[55] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In

Proceedings of the 36th IEEE Symposium on Security and Privacy.

[56] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM

Conference on Computer and Communications Security.

[57] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the Ef-

fectiveness of Fine-Grained Address Space Layout Randomization. In Proceedings

of the 34th IEEE Symposium on Security and Privacy.

[58] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris, Taesoo Kim,

and Wenke Lee. 2016. Enforcing Kernel Security Invariants with Data Flow

Integrity. In Proceedings of the 23th Annual Network and Distributed System

Security Symposium.

[59] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-edge Control-

flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security

Symposium.

[60] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan: Scal-

able Use-after-free Detection. In Proceedings of the Twelfth European Conference

on Computer Systems.

[61] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,

Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-

Sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security.

[62] Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski, Xi Chen,

Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano

Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the

Binary Level. In Proceedings of the 37th IEEE Symposium on Security and Privacy.

[63] w00d. 2013. Analysis of nginx 1.3.9/1.4.0 stack buffer overflow and x64 ex-

ploitation (CVE-2013-2028). http://www.vnsecurity.net/research/2013/05/21/

analysis-of-nginx-cve-2013-2028.html.

[64] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.

Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary

Code. In Proceedings of the 19th ACM SIGSAC Conference on Computer and Com-

munications Security.

[65] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon: Detecting

Violation of Control Flow Integrity Using Performance Counters. In Proceedings

of the 42nd Annual IEEE/IFIP International Conference on Dependable Systems and

Networks.

[66] Yves Younan. 2015. FreeSentry: Protecting Against Use-After-Free Vulnerabil-

ities Due to Dangling Pointers. In Proceedings of the 22nd Annual Network and

Distributed System Security Symposium.

[67] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank Piessens, and

Wouter Joosen. 2010. PAriCheck: An Efficient Pointer Arithmetic Checker for C

Programs. In Proceedings of the 5th ACM Symposium on Information, Computer

and Communications Security.

[68] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In Proceedings of the 34th IEEE Symposium

on Security and Privacy.

[69] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

Proceedings of the 22nd USENIX Security Symposium.

A FORMAL RESULTS
In this section, we formally express and prove the correctness of

our approach. In particular, we define the syntax (§A.1) and seman-

tics (§A.2) of a core low-level language that we use to define our

approach. We then formally define the problem that we address

(§A.3) and our mechanism for protecting control security (§A.4).

A.1 Syntax
Figure 9 contains the syntax of a space of program instructions,

Instrs. Instrs is defined over a space of disjoint sets of data regis-

ters RegsD , code-pointer registers RegsC , and data-pointer registers

RegsP . An instruction may operate over data values (Equation 1),

set a value as an offset for pointer arithmetic (Equation 2), load

data from memory to a register (Equation 3), store data in a register

to memory (Equation 4), branch to the address in a code pointer

(Equation 5), load a code pointer frommemory into a register (Equa-

tion 6), store a code pointer in a register to memory (Equation 7),

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://github.com/kitctf/nginxpwn
http://xlab.tencent.com/en/2016/11/02/return-flow-guard/
http://xlab.tencent.com/en/2016/11/02/return-flow-guard/
http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html

Instrs := x := y + z (1)

| offset:=x (2)

| x := *p (3)

| *p := x (4)

| br c (5)

| c := *p (6)

| *p := c (7)

| p := q + offset (8)

| p := alloc x (9)

| p := *q (10)

| *p := q (11)

Figure 9: The instructions, Instrs, of our target language. x, y, and z
range over data registers RegsD , c ranges over code-pointer registers
RegsC , and p and q range over data-pointer registers RegsP .

compute a data pointer by adding a data pointer to an integer offset

(Equation 8), allocate a memory object with size in a given data

register (Equation 9), load a data pointer from memory into a regis-

ter, or store a data pointer in a register to memory (Equation 11).

Although all arithmetic operations are assumed to be binary, when

convenient we will depict operations as using fewer registers.

A program is a map from instruction addresses to instructions.

That is, for space of instruction addresses AddrsC containing a

designated initial address ι ∈ AddrsC , the language of programs is

Lang = AddrsC → Instrs.
Instrs does not contain instructions similar to those in an ar-

chitecture with a complex instruction-set, which may, e.g., perform

operations directly on memory or call to and return from a proce-

dure. The design of µCFI directly generalizes to analyze programs

that use such an instruction set. In particular, the actual implemen-

tation of µCFI monitors programs compiled for the x86 architecture.

A.2 Semantics
Each program P ∈ Lang defines a language of sequences of program
states, called runs, that are generated by executing a sequence of

instructions in P from an initial state. A state is a frame that binds

registers to values, paired with a heap that maps data addresses to

values. LetWords be a space of data words, let Objs be a space of
data objects. A data address is a data object paired with an integer

offset; i.e., the space of data addresses is denoted AddrsD = Objs ×
Words. The space of values is denoted Values =Words∪AddrsC ∪
AddrsD .

A data frame is a map from data registers to words paired with

an offset value; i.e, the space of data-register frames is denoted

FramesD = (RegsD →Words) ×Words. The spaces of code-pointer
frames (FramesC = RegsC → AddrsC) and data-pointer frames

(FramesP = RegsP → AddrsD) are defined similarly. The code-

pointer and data-pointer frames of each initial program state map

each code and data-pointer register to null.

A heap is a pair consisting of (1) a map s : Objs→ Z from each

object to its size and (2) a mapm : AddrsD ↪→ Values that for each
o ∈ Objs and i ∈ Z with 0 ≤ i < s (o), maps address (o, i) to some

value. The space of all heaps is denoted Heaps.

A state is a tuple consisting of (1) the address of the current

instruction, (2) a data frame, (3) a code-pointer frame, (4) a data-
pointer frame, and (5) a heap. The space of states is denoted States.

Each instruction in Instrs implements a transition function τ
that maps each pre-state and instruction to the resulting post-state.

The definition of τ is standard and is thus omitted in order to

simplify the presentation; the instructions that refer to symbol

offset update and use the offset value in the data frame of the

current state. For each program P ∈ Lang and sequence of states

r such that each pair of adjacent states in r are in the transition

relation of a corresponding instruction in P, r is a run of P. The runs
of P are denoted Runs(P).

A.3 Problem definition
In this section, we define the problem that we address in this work

in formal detail. We first define spaces of program instrumenters

and precise monitors, and then define conditions under which they

are valid control-security monitors.

A procedure that, given a program, generates another program is

a program instrumenter ; i.e., the space of all program instrumenters

is denoted Instrumeters = Lang→ Lang. A procedure that, given a

program and sequence of instruction addresses, outputs an instruc-

tion address is a control monitor ; i.e., the space of control monitors

is denotedMons = Lang × Addrs∗C → AddrsC .
The control trace of a run r is the sequence of targets of indirect

branches taken by r . Our formal definition of a valid control monitor

is expressed in terms of the code addresses visited over program

runs and conditions under which one run of program simulates a

run of another program. For each P ∈ Lang and r ∈ Runs(P), the
sequence of targets of indirect control branches taken at states of r
is the control trace of r , and is denoted Trace(r).

A run r is simulated by a run r ′ if for each state in r , there
is a corresponding state in r ′ that maintains all state of r , and
may optionally maintain additional state. Let r be a sequence of
states q0,q1, . . . ,qn ∈ States. For P′ ∈ Lang, let r ′ ∈ Runs(P′) be
a concatenation of n non-empty subsequences of states such that

for each 0 ≤ i < n and each state q′ in the ith subsequence, q′

has the data-register frame, code-pointer frame, and data-pointer

frames of qi over all registers bound in qi (although q′ may bind

registers that are unbound in qi), and q
′
has the heap of qi . Then r

is simulated by r ′, denoted r ∼ r ′.
Our work is intended to be applied in a security context in

which one may both instrument a program before it is run and

monitor the control branches taken by the instrumented program.

Thus, we will address the problem of designing control frameworks,

consisting of both a static program instrumenter and a dynamic

control monitor, which may read the control branches chosen by

an instrumented program and output a single instruction address

to which the instrumented program may next transfer control.

Definition 1. Let P ∈ Lang, r ∈ Runs(P), q ∈ States be such
that r · q ∈ Runs(P), and let a ∈ AddrsC be such that Trace(r · q) =
Trace(r) · a. Let I ∈ Instrumeters andM ∈ Mons be such that there

is some r ′ ∈ Runs(I (P)) such that (1) r ∼ r ′; (2) M (Trace(r ′)) = a.
Then I andM are a valid control framework for P and r · q.

The definition of a valid control framework ensures that any

framework that exists is precise. In particular, because each control

monitor is a function, each monitor in a framework, given a control

trace of a program, may output only a single code address that

may be the valid target of the monitored program’s not indirect

branch. Such a definition is not satisfied by previous approaches to

online control-security enforcement, such as PittyPat [21]. Such

approaches, after reading a control trace, may potentially allow any

control target from a non-singular set. Thus, the analysis cannot

implement a function from each trace to a single control target

allowed next.

The problem that we address in this work is to develop a valid

control framework for each program and its runs. To address this

problem, we define a program instrumenter Instrumenter (§A.4.1)

and a program monitorMonitor (§A.4.2) such that Instrumenter

and Monitor are a valid control framework for each program and

each of its runs.

A.4 Protecting control security
In this section, we formally define a program instrumenter (§A.4.1)

and program monitor (§A.4.2).

A.4.1 Program instrumentation. Instrumenter, given a program

P, generates a program P’ such that each offset used to compute

a pointer in P determines the target of an indirect branch in P’. P’

uses two code registers that we assume, without loss of generality,

are not used by P, namely offsetTgt and nextInstr. P’ also con-

tains a region of code starting at a fixed address offsetCode; the

size of the region is the maximum value of a data word, denoted

|Words|. The range of instruction addresses between offsetCode

and offsetCode + |Words| is called the offset-code region. Each in-

struction in the code region is a noop, except for the final instruction,

which indirectly branches to the code address stored in nextInstr.

P’ is an instrumentation of P that, before each instruction that

performs pointer arithmetic, translates the offset used to compute

the new pointer to a corresponding indirect branch. Let p, q ∈ RegsP
be such that q:=p+offset ∈ P. P’ includes the following additional

instructions immediately before P:

(1) An instruction that computes a branch target of offsetCode

plus x: offsetTgt:=offsetCode+offset.

(2) An instruction that binds the address of the next instruction

to nextInstr: nextInstr:=ip+1.

(3) An instruction that transfers control to the instruction at

offsetTgt: br offsetTgt.

Instrumenter is a valid program instrumenter: given a program

P, Instrumenter generates a program that simulates each run of P.

Lemma 1. For each P ∈ Lang and r ∈ Runs(P), there is some

r ′ ∈ Runs(Instrumenter(P)) such that r ∼ r ′.

Proof. Proof by induction on r . For the base case, r is an ini-

tial state σ , which is a data frame paired with an empty heap.

σ is also an initial state of Instrumenter(P). Thus r is a run of

Instrumenter(P) such that r ∼ r .
For the inductive case, r is a initial run s , followed by states σ

and σ ′. By the inductive hypothesis, s · σ is simulated by some s ′ ∈
Runs(Instrumenter(P)). The instruction i ∈ Instrs on which σ
transitions to σ ′ may have one of the following forms. If i is any

instruction other than one that performs pointer arithmetic, then

s ′ ·σ ′ is in Runs(Instrumenter(P)) and s ·σ ·σ ′ ∼ s ′ ·σ ′. Otherwise,
if i performs pointer arithmetic, then from σ , Instrumenter(P)
steps through a bounded sequence of states Σ with instruction

addresses in the offset-code region, and then the state σ ′. s · Σ is in

Runs(Instrumenter(P)) and s · σ · σ ′ ∼ s ′ · Σ. □

The key idea behind our approach is to monitor programs in a

specific form that reflect values used in pointer arithmetic as targets

of control branches. In particular, if each instruction that performs

pointer arithmetic in each run of program P is a preceded by an

instruction that branches to a target that encodes that encodes the

offset, then we say that P reflects pointer-arithmetic offsets.

Definition 2. Let P ∈ Lang be such that for each r ∈ Runs(P)
and each σ ∈ r that steps using an instruction that performs pointer

arithmetic, there is some σ ′ ∈ r before σ and c ∈ RegsC such that σ ′

steps on instruction br c, σ (offset) = σ ′(offsetCode+c), and there
is no σ ′′ ∈ r between σ ′ and σ and d ∈ RegsC such that σ ′′ steps on
instruction br d and offsetCode ≤ σ ′′(d) < offsetCode+ |Words|.
Then P reflects pointer-arithmetic offsets.

Instrumenter only generates programs that reflect pointer-

arithmetic offsets.

Lemma 2. For each P ∈ Lang, Instrumenter(P) reflects pointer-
arithmetic offsets.

Lemma 2 follows directly from the definition of Instrumenter.

A.4.2 Control monitoring. Monitor, given a program P and con-

trol trace T , outputs the only control target that may be taken next

by a valid run of P that has executedT . We now define the domain of

information about program states maintained byMonitor (§A.4.2)

and then define how domain information is updated by simulating

each instruction executed by P (§A.4.3).

Monitor States. Monitor maintains a code-pointer frame, data-

pointer frame, and heap that soundly models the structure of data

objects and code pointers in the P’ heap, while retaining no informa-

tion about the data values in the heap. I.e., let the countably-infinite

space of monitor objects (used by the monitor to model data objects

allocated by the monitored program) be denoted ObjsM . Let amon-

itor address be a monitor object paired with an offset; i.e., the space

of monitor addresses is denoted AddrsM = ObjsM × Z. A moni-

tor pointer frame binds data pointer to monitor addresses; i.e., the

space of monitor pointer frames is denoted FramesM = RegsP →
AddrsM . A monitor heap is a partial map from monitor addresses to

code addresses and monitor address; i.e, the space of monitor heaps

is denoted HeapsM = AddrsM ↪→ AddrsC ∪ AddrsM . A monitor

state is a tuple (a,o,C,D,H), where

(1) The address a ∈ AddrsC of the current instruction.

(2) The offset o ∈ Z to be used in the next pointer-arithmetic

instruction.

(3) The code-pointer frame C ∈ FramesC (§A.2) of the moni-

tored program.

(4) A monitor-pointer frame D ∈ FramesM (§A.2) isomorphic

(as defined below) to the data-pointer frame of the monitored

program.

(5) A monitor heap H ∈ HeapsM isomorphic (as defined below)

to the heap of the monitored program.

The space of monitor states is denoted StatesM .

Each monitor state represents an infinite set of program states

with identical code-pointer frames and isomorphic heaps. Let Q ∈
FramesP , Q ′ ∈ FramesM , H ∈ Heaps, H ′ ∈ HeapsM , and f :

Objs → ObjsM be such that (1) f is one-to-one, (2) for each p ∈
RegsP , f (Q (p)) = Q ′(p), (3) for each o ∈ Objs and i ∈ Z, ifH (o, i) ∈
AddrsC , then H ′(o, i) = H ′(f (o), i) and if H (o, i) ∈ AddrsD , then
f (H (o, i)) = H ′(f (o), i). Then for a ∈ AddrsC , D ∈ FramesD ,
C ∈ FramesC , state q = (a,D,C,Q,H) is object-abstracted by mon-

itor state q′ = (a,D,C,Q ′,H ′), denoted q ⪯O q′. If in addition,

q(offset) = q′(offset), then q is fully abstracted by q′, denoted
q ⪯ q′.

For each P ∈ Lang, the initial monitor state ιPM ∈ StatesM con-

sists of the initial instruction pointer of P, a default offset value, the

initial code-pointer and data-pointer frames, and an empty monitor

heap. For each initial state σ ∈ States of P, σ ⪯ ιPM .

A.4.3 Interpretations of instructions over monitor states. Monitor,

given P and a sequence of code addressesT , determines the sequence

of instructions I that must be executed by any run of P that branches

to the addresses in T in sequence. After reading the sequence, the

monitor outputs the single valid control target of the next indirect

branch of the monitored run.

To do so, Monitor models the effect of each instruction in I on
the current state of P by appropriately updating a monitor state that

it maintains. For a ∈ AddrsC , o ∈ Z, C ∈ FramesC , D ∈ FramesM ,

and H ∈ HeapsM , each monitor pre-state q = (a,o,C,D,H) and in-

struction i ∈ Instrs define a unique monitor post-state, as follows.

• Each instruction i that performs arithmetic on data, loads

from memory, stores data to memory only updates the in-

struction address of q to be the address following i.

• For each c ∈ RegsC , instruction br c updates the instruction

address of the maintained monitor to be C (c). If the branch
target is within the offset code region (i.e., if

offsetCode ≤ C (c) < offsetCode + |Words|), then o is up-
dated to be C (c) − offsetCode.
• For each c ∈ RegsC andp ∈ RegsP , instruction c:=*p updates
C to bind c to H (p). Instruction *p:=c updates H to map

address H (D (p) to C (c).
• For all p, q ∈ RegsP and each x ∈ RegsD , instruction p:=q+x
updates D to bind p to D (q) + o.
• For each x ∈ RegsD , instruction p:=alloc x updates D to

bind a monitor object not in the domain of H to p.

• For all p, q ∈ RegsP , instruction q:=*p updates D to bind q

to H (D (p)). Instruction *q:=p updates H to map H (D (q)) to
D (p).

For each q ∈ StatesM and i ∈ Instrs, the monitor state resulting

from executing i on q is denoted τM (q, i).
Interpretations of instructions over monitors preserve two key

properties. First, the interpretation of each instruction preserves

object abstraction.

Lemma 3. For each q ∈ States, qM ∈ StatesM such that q ⪯O
qM , and i ∈ Instrs, it holds that τ (q, i) ⪯O τM (qM , i).

Proof. Proof by cases on the structure of i. The proof follows

directly from the definition of object abstraction offsets and τM on

i. □

Second, interpretation of pointer arithmetic preserves full ab-

straction.

Lemma 4. For each q ∈ States, qM ∈ StatesM such that q ⪯
qM , p, q ∈ RegsD , it holds that τ (q, i) ⪯ τM (qM , i), where i ≡
p:=q+offset.

Proof. The proof follows immediately from the definition of

full abstraction and the interpretations of pointer arithmetic over

concrete states and monitor states. □

The fact that the transformer over monitor states soundly models

the effect of each instruction supports the fact that the analysis

monitor always soundly determines the unique next valid control-

transfer target.

Lemma 5. Let P ∈ Lang be such that P reflects pointer-arithmetic

offsets, r ∈ Runs(P), T ∈ Addrs∗C , and a ∈ AddrsC be such that

Trace(r) = T · a. Then Monitor(T) = a.

Proof. Proof by induction on r . The key property established

by induction on r is that after Monitor analyzes r with final state

σ , monitor maintains a monitor state σM such that σ ⪯O σM ; if σ
has the instruction pointer of an instruction that performs pointer

arithmetic, then σ ⪯ σM . For the base case, where r is a sequence
consisting of only an initial state σ , the monitor state maintained

by Monitor is ιPM , and σ ⪯ ιPM .

For the inductive case, r is a sequence of states s , followed by

states σ and then σ ′. Monitor, given Trace(s · σ), maintains a

monitor state σM such that σ ⪯ σm , by the inductive hypothesis.

If σ has the instruction pointer of an instruction that does not

perform pointer arithmetic, then for σ ′M = τM (σ , i) the monitor

state maintained byMonitor, it holds that σ ′ ⪯O σ ′M , by Lemma 3.

Otherwise, if σ has the instruction pointer of an instruction i that

performs pointer arithmetic, then s contains a step on a branch

instruction into the offset code region, and the most recent such

instruction branches to offsetCode + offset, by the assumption

that P reflects pointer-arithmetic offsets. Thus the offset in σM is

offset in σ , by the definition of τM for branch instructions. Thus

σ ′ ⪯ σ ′M , by Lemma 4.

The property proved by induction, combined with the definition

of object abstraction, entail thatMonitor(T) = a. □

The components of µCFI correctly enforce control security.

Theorem 1. For each P ∈ Lang and r ∈ RunsP , the system

(Instrumenter,Monitor) is a valid control framework.

Proof. The fact that (Instrumenter,Monitor) is a valid con-

trol framework follows directly from the definition of a valid con-

trol framework (Defn. 1), the fact that Instrumenter is a valid

instrumenter (Lemma 1) that only generates programs that reflect

pointer-arithmetic offsets (Lemma 2), and the fact that Monitor

soundly determines each control target (Lemma 5). □

	Abstract
	1 Introduction
	2 Problem
	2.1 Motivating example
	2.2 Incomplete protection by existing CFIs
	2.3 Enforcing UCT with full context
	2.4 Threat Model & Background

	3 System Design
	3.1 Constraining data identification
	3.2 Arbitrary data collection
	3.3 Efficient control-flow construction
	3.4 Online points-to analysis
	3.5 ICT target validation

	4 Implementation
	5 Evaluation
	5.1 Enforcing UCT property
	5.2 Preventing attacks
	5.3 Overhead measurement
	5.4 Compatibility with shadow stack

	6 Discussion & Future Work
	6.1 Security promise by CFI.
	6.2 Security analysis and CPI
	6.3 Reliability of Intel PT
	6.4 Unsupported benchmarks
	6.5 Future work

	7 Related Work
	8 Conclusion
	References
	A Formal Results
	A.1 Syntax
	A.2 Semantics
	A.3 Problem definition
	A.4 Protecting control security

