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Abstract. Privilege separation is a widely used technique to secure complex software
systems. With privilege separation, software components are divided into several parti-
tions and these partitions can only communicate through limited interfaces. However,
the interfaces still provide a channel for one partition to influence code in other par-
titions. As a result, certain memory access patterns can be leveraged by attackers to
perform arbitrary memory access. We refer to this type of memory access errors by the
acronym DUI (Dereference Under the Influence). In this paper, we present a systematic
method to detect vulnerabilities leading to DUI through binary analysis, and to estimate
the capability attackers can obtain through DUI exploits. The evaluation shows that our
approach can accurately identify vulnerable code that leads to arbitrary memory ac-
cess in real-world software components and programs, when they are transformed to
privilege-separated designs.

1 Introduction

Privilege separation is widely used to secure complex software systems. With this
method, software components are divided into several partitions. Each partition only
has a reduced set of privileges and inter-partition communication is only possible via
clearly defined interfaces. To protect legacy programs using privilege separation, devel-
opers need to transform the monolithic legacy programs. For example, the OpenSSH
server was originally implemented as a monolithic program, where a single vulnerabil-
ity will expose all critical resources to attackers. To mitigate the threat, part of OpenSSH
code without access to high-privileged resources (e.g., password) was separated from
other code and isolated as a slave process [39]. In addition, Qmail [4], Postfix [7] and
Google Chrome [3, 46] are also designed (or re-designed) with privilege separation.

To facilitate retrofitting legacy code into privilege-separation designs, many solu-
tions have been proposed to partition software and assign each partition a different
set of privileges, such as Wedge [6], Privtrans [11], and Privman [27]. The deployed
techniques include sandboxing [44–46] and process-based isolation [6, 11, 27]. When
the monolithic code is divided into several partitions, some program behaviors inside
the original code (e.g., function calls or direct memory access) need to be transformed
into inter-partition communications (e.g., via socket and shared memory). As a result,
program logic ensuring the correctness of program semantics, such as valid ranges of
variables, may be separated into different partitions and fail to enforce the correctness.
Therefore, additional checking code is often needed, especially in the high-privileged



partitions, to make sure that data from other partitions is valid. However, if the trans-
formation process fails to include checking code in a high-privileged partition, or the
added checking code is inadequate, attackers can use specially-crafted inputs to com-
promise the high-privileged partitions and carry out malicious actions with escalated
privileges.

Memory errors such as buffer overflow can be exploited in such cross-partition at-
tacks. There are more subtle memory errors with which attackers can perform arbitrary
memory access inside the high-privileged partition, if the victim partition has certain
memory access patterns. For example, if a partition uses an input from an untrusted
interface as the array index, writing to the array inside the partition is an arbitrary mem-
ory access under the influence of the input provider. If attackers provide the input, they
can utilize this memory access behavior to modify critical data or retrieve secrets of the
partition in a targeted manner.

In this paper, we refer to this type of memory access errors by the acronym DUI
(Dereference Under the Influence). It stems from the memory access pattern in the vul-
nerable partition: The address used in memory read or memory write is influenced by
malicious data from other partitions. Through DUI exploits, attackers can corrupt dis-
crete memory locations, instead of a continuous memory block, significantly improving
the stability of the attacks.

Challenges. DUI exploits can be prevented through sufficient checks on interface
inputs. Unfortunately, it is non-trivial to ensure that adequate checking code has been
added at correct locations. The checking code in legacy programs is often scattered
across many program locations in the monolithic code base, which is split during the
privilege-separation transformation, it is necessary to guarantee that each of these pro-
gram locations are checked correctly. However, to achieve this goal, manual modifica-
tion usually takes a long time to fully understand the requirement of checking opera-
tions, while automatic separation methods often miss important checks. Therefore, we
need a systematic method to detect such DUI vulnerabilities resulting from privilege-
separation transformations.

Our Approach. To address these challenges, we develop an approach, DUI De-
tector, to automatically detect code suspicious to DUI exploits in the binary of trusted
partitions. Specifically, through binary program analysis, we identify the suspicious in-
structions that use data from other partitions to dereference memories. Then we use
symbolic analysis to identify code with the DUI vulnerability and assess the attackers’
capabilities in exploiting them. DUI Detector helps to identify concrete code instances
that are easily influenced by attackers among a large code base.

We applied our approach on several real-world software systems retrofitted with
different types of isolation schemes. DUI Detector successfully detected DUI vulner-
abilities inside them. We present four case studies where attackers can perform DUI
attacks. Furthermore, our approach reports the attackers’ capability to the developers,
providing a comprehensive understanding of the vulnerability.

In summary, this paper makes the following contributions:

– We study the problem of arbitrary memory access (DUI) in privilege-separation
transformations, and identify several general memory access patterns leading to
DUI vulnerabilities in binary instruction level.



– We design a novel mechanism to automatically detect DUI vulnerabilities, and to
estimate attackers’ capability in controlling user memory spaces. It helps develop-
ers add sufficient checking.

– We prototype an automated tool and evaluate it on several real-world software. Our
tool automatically detects and comprehensively analyzes DUIs in these software
programs when they are gone through privilege-separation transformation.

2 Problem Overview

In this section, we motivate the problem by a concrete example. Then we provide the
problem definition of DUI detection and discuss two DUI types: The write DUI and
the read DUI. At the end we discuss the memory access patterns used to detect DUI
vulnerabilities.

1 struct subobj { ... } * p_sub;
2 struct object { ...
3 struct subobj * sub;
4 } * p_obj;
5
6 int main() {
7 p_obj = create_object();
8 p_sub = create_subobj();
9 p_obj->sub = p_sub;

10 }
11
12 // create an object instance and return its pointer
13 struct object * create_object()
14 { ... }
15
16 // create a subobj instance and return its pointer
17 struct subobj * create_subobj()
18 { ... }

Listing 1.1. Example code to illustrate DUI problem.

2.1 Motivating Example

We use the example in List 1.1 to illustrate the memory access problem during the pro-
gram transformation. In this example, the structure object has one pointer of structure
subobj. Functions create object and create subobj return pointers of new
structure instances. The statement on line 9 in function main assigns the pointer p sub
of a subobj instance to the subobj field of a object instance. Originally function
create object and create subobj are in the same partition with the function



main, and there are checking code inside them to make sure that the return values
are correct. During the transformation, these two functions are separated into a low-
privileged partition since they are not trusted any more. In this case, the return values
could be malicious. To protect the high-privileged main function, we can use mem-
ory isolation to prevent the direct memory access from low-privileged code to main’s
memory, in which case function create object and create subobj just manage
main’s memory. However, this is inadequate to protect the high-privileged main: The
statement on line 9 contains a memory access vulnerability. When the low-privileged
partition is malicious, it allows writing a malicious p obj to a memory location p sub
inside the protected one. The statement on line 9 is an instance of DUI vulnerability.

2.2 Problem Definition

We give the definition of the problem solved in this paper.

DUI Detection: Given a partition of a privilege-separated program, we detect whether
the partition’s memory access behaviors can be influenced by data from its interfaces. In
particular, the memory addresses or the data are derived from the interface inputs, giving
attackers the ability to read or write to a large range of memory inside the partition.

Attackers use the DUI vulnerability as a memory access service to mount attacks.
They specify the address and the data through specially-crafted inputs. DUI vulnerabil-
ity then finishes the memory operation on behalf of attackers. In real-world programs,
the logics used to derive the address from the interface inputs could be complicated,
thus subtle and hard to spot. However, the final result is that the attacker can exercise
certain levels of influence over the address of the memory operation. It is worthwhile to
note that only controlling the memory address is inadequate to corrupt the memory or
to steal the sensitive information. Corresponding data flows are necessary to provide the
malicious data or send the confidential data out. Based on the direction of the memory
access, there are two types of DUI, the write DUI and the read DUI.

1 v1 = API_recv();
2 v2 = API_recv();
3 array[v1] = v2;

Listing 1.2. An example of write DUI

Write DUI. We call a memory write operation the write DUI if both the memory
address and the value to be written in the operation are derived from the interface inputs.
Take the code in Listing 1.2 as an example. The API recv() is an interface through
which the code can receive data from other partitions. The memory write operation on
line 3 has the address array + v1 and the data v2 derived from the interface inputs,
which allows the input provider to write the selected data to any address in its memory
space. We can relax the requirement of the data to be written to a value predictable by
attackers. An example is that if v2 in Listing 1.2 is a constant 0, attackers can use v2
to reset important flags, or terminate a C-style string. With the write DUI, attackers can
corrupt the memory of the vulnerable program. Not only can they mount control flow



hijacking attacks by corrupting code pointers or return addresses, they can also change
critical data in memory to mount non-control-data attacks [16, 26].

1 v1 = API_recv();
2 data = *(base + v1);
3 API_send(data);

Listing 1.3. An example of read DUI

Read DUI. We call a memory read operation the read DUI if the memory address in
the operation is derived from the interface inputs and the retrieved data are eventually
passed to the output interface of the partition. Consider the example in Listing 1.3.
API recv() and API send() are APIs used by the code to receive data from other
partitions and send data to other partitions, respectively. This code snippet retrieves
data from a local buffer and sends it out. Since the data retrieving address base + v1
is under the control of attackers via the interface input v1, attackers can steal sensitive
information from the partition. For read DUI, it is insufficient to control the memory
read address. The data being read has to reach an output interface for it to complete.
In real-world programs, the web client may have secret keys or high-privileged files on
the server client. Attackers can use read DUI vulnerability to steal the secret key or file.
Another exploit is to leak the randomized address of the loaded modules, leading to
bypassing address randomization protections [5, 37].

2.3 Memory Access Patterns to Detect DUIs

Although attackers can use various ways to control the memory access, one DUI vul-
nerability is inevitably represented as attacker-controllable memory address and data
in memory access instructions, i.e., the address is derived from the input, and the data
also comes from the input (for the write DUI) or is sent out (for the read DUI). This
observation inspires us to use instruction-level memory access patterns to detect DUI
vulnerabilities. We summarize the memory access patterns used in DUI exploits below.

– Write DUI Pattern 1. The memory write address and the data are derived from the
interface inputs. In this case, attackers control both the value and the address in
memory write operation.

– Write DUI Pattern 2. The memory write address is derived from the interface in-
puts. The data value is predictable to attackers. Attackers can exploit this code to
set the predictable value to any memory address.

– Read DUI Pattern. The memory read address is calculated from the interface in-
puts. The retrieved data are then passed to output interfaces (e.g., via network, file
operation or standard printing).

3 Design

3.1 Overview

Figure 1 shows the design of our DUI detection tool, DUI Detector. It takes two inputs:
The program binary containing the partition to be checked and a normal input to the
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Fig. 1. Design of the DUI Detector. There are two inputs to the system. One is the program binary,
containing the partition to be checked. Another one is a normal input to the program. The output
is the list of DUI vulnerabilities and the assessment of attackers’ capabilities.

program. It detects DUI vulnerabilities during the binary execution for the given in-
put and estimates the capability of attackers obtained by DUI exploits. There are three
phases in the process: Execution state collection, suspicious instruction shortlisting and
dereference behavior analysis.

Execution State Collection. First we run the program binary in an emulated envi-
ronment with the given input and record all the execution states of the checked parti-
tion, including instructions, operands, processor states and memory states. We also log
system-level information such as module loading and unloading behaviors.

Suspicious Instruction Shortlisting. From the execution states, our tool identifies
instructions potentially vulnerable to DUI exploits. We use data dependency analysis to
find the source of the memory address and the data used in memory access instructions.
For a memory read operation, we also search forward to check whether the retrieved
data is sent to other partitions through output interfaces. If the address is derived from
the interface inputs and the data is derived or used in an attacker-controllable manner,
we report this memory operation as a suspicious DUI vulnerability.

Dereference Behavior Analysis. Our tool generates the symbolic formula, called
the access formula, to capture all the constraints from the interface inputs to the suspi-
cious instruction. Then it analyzes the access formula to verify the DUI vulnerability
and to assess the capability of attackers in controlling the memory space of the vulner-
able partition.

DUI Detector reports the verified DUI vulnerabilities together with their severity to
developers, helping them to fix the vulnerable code. Next, we introduce the key phases
of the DUI Detector.

3.2 Suspicious Instruction Shortlisting

From the collected execution states, we use data dependency analysis to track the data
flow of the memory address and the data used in memory access instructions. The meth-
ods used to detect DUIs are given below.

To detect write DUIs, we check for the following conditions for each instruction.
(1) It is a memory write instruction, i.e., instructions that write the data into memory,
like mov, add, push and successful conditional move cmov. (2) The source operand



is derived from the interface inputs, or predictable to attackers. (3) The address of the
destination operand is also derived from the interface inputs.

To detect read DUIs, it is insufficient to check just one single instruction. Other than
the actual memory read operation, it is also necessary to identify the data flow from the
read operation to output interfaces, as we discuss in Section 2. Hence, we use a two-step
approach to identify a read DUI.

1. A memory read instruction is selected for further checking if it matches the follow-
ing two conditions: (1) The instruction reads data from memory and saves the data
into registers. Instructions reading from registers or without saving the data into
registers are ignored. (2) The memory address is derived from the interface inputs.

2. For an instruction selected above, we perform forward slicing on the data flow of
the destination operand (the retrieved data). If the data reaches an output interface,
we report it as a potential read DUI.

Our tool generates a list of the suspicious instructions potential vulnerable to DUIs.
However, strong constraints on the interface inputs could significantly limits the attack-
ers’ capability, even making the instruction unexploitable. Hence we need to analyze
each suspicious instruction to confirm the vulnerability and assess attackers’ capability.

3.3 Dereference Behavior Analysis

Given a suspicious instruction identified in the previous step, our tool extracts an access
formula to represent the relationship between the interface inputs and the address or data
used in the instruction. The access formula captures all the constraints in the execution
states with respect to the interface inputs. There are four types of constraints in the
access formula as follows.

– Data-Flow Constraints. Data-flow constraints describe the arithmetic relations be-
tween the address and the data in the DUI instruction and the interface inputs. They
are presented as a sequence of arithmetic operations.

– Control-Flow Constraints. Control-flow constraints ensure that the attacked par-
tition follows the same path as the one recorded in the execution states. We only
consider the path constraints related to the interface inputs. Other path constraints
are out of the attacker’s control and are assumed to be satisfied.

– Memory Space Constraints. To reach the suspicious instruction, all the memory
accesses should be legitimate. Specifically, the code must have the correct write
or read permission of the accessed page. Otherwise, page fault exceptions will be
raised and divert the execution path. This constraint limits the attacker’s capability
since only a subset of memory space is accessible.

– Data Life-Cycle Constraints. To create an effective attack, the malicious data
(written data or retrieved data) must be used within its life-cycle. Otherwise, the
suspicious instruction cannot be exploited. For example, if the malicious data writ-
ten to a selected location is immediately overwritten by a benign value, the attack
does not have any effect on the victim partition. To capture this constraint, our tool
considers subsequent instructions in order to track the aliveness of the data.



The generated access formula captures all the constraints on the interface inputs to
reach the suspicious instruction and continue the execution. By assessing the attacker’s
capability by exploiting the instruction, we can determine if the suspicious instruction is
indeed a DUI vulnerability. If so, we report the suspicious instruction and the attackers’
capability to developers.

Attackers’ Capability Assessment. Attackers’ capability is represented as the abil-
ity to control the address and the value in the memory operation. A larger memory
range controllable by attackers indicates a stronger attackers’ capability. However, due
to the constraints on the interface inputs, not all the malicious inputs lead to a successful
attack. The working inputs form a valid data space, and the attacker’s capability is de-
termined by the size of this space. Our tool constructs constraint queries to estimate this
space size. Specifically, we assign concrete values or a memory range to the operands
of the suspicious instruction, i.e., the address or the data. Then these assignments are
added to the access formula as new constraints to form a query. By solving the query
using a constraint solver, we get the answer to the following questions: Q1: Is there
any input making the partition follow the same path to the suspicious instruction when
the address or the data in the address have to be a given value? Q2: Is there any input
making the partition follow the same path to the suspicious instruction when the address
or the data have to be within a given range? Q3: Is it true that for any address or any
data in the given range there is an input making the partition follow the same path to the
suspicious instruction? The answer to the question Q1 indicates attackers’ capability on
controlling specific addresses. This is useful to build real exploits, for example, writing
the ROP gadget address to a function pointer. A negative answer to the question Q2
helps filter out a memory range from attackers’ capability. While a positive answer to
the question Q3 adds the queried range into attackers’ capability.

We take several query strategies to efficiently answer these questions. These strate-
gies are based on the bit-pattern analysis and the range analysis [33, 35]. Through these
methods, we can estimate the valid memory space controllable by attackers for each of
the suspicious instruction.

– Initial Target Analysis. We first consider the memory page permission to initialize
the memory range. For a memory read operation, the target memory location has
to be readable. For a memory write operation, the target memory location has to be
writable. Using this method, the queried memory range is limited to the readable
or writable memory space.

– Bit-Pattern Analysis. Bit pattern analysis uses queries that specify concrete values
on particular bits (or all bits) of the target value [33, 35]. An example of the query
is whether the last two bits of the address have to be 10. This gives the answer to
question Q1.

– Range Analysis. The range query identifies whether the values inside a particular
range are valid [35] or not. If all values are valid, we conclude that the queried
range is a valid range. If no value is valid, we remove the range from the valid
memory space. If only some values are valid, the query solver will give a concrete
valid value. We use this value to divide the range to two subranges. Then we use
the range query to query both subranges. This query answers question Q2 and Q3.



Finally the report given by DUI Detector includes the identified DUI vulnerabilities,
together with the attackers’ capability obtained by exploiting such vulnerabilities. It
points out all the vulnerable-prone code in the checked partition. This enables security
analysts to focus their efforts on a particular portion of the code.

4 Implementation

We built a prototype of DUI Detector on a 32-bit Ubuntu 10.04 system by extending
the BitBlaze [42] platform. The prototype uses STP [22] as the SMT solver to query the
access formula.

4.1 Taint Propagation

DUI Detector uses taint analysis to track the data flow of the interface inputs. Data
from the interfaces are bound with the taint information of the source. Taint information
has two aspects: One aspect is the taint attribute, a flag indicating whether a particular
memory byte is tainted or not. Another aspect is the taint record, which contains the
sources of the taint attribute. We use TEMU, the dynamic analysis engine of BitBlaze,
as the base of taint propagation. However, there are several problems when we use
TEMU to build our tool. Next we discuss these problems and present our solutions.

Finer-Gained Taint Record Propagation. Since we need to capture all the exe-
cution constraints, the taint propagation has to be accurate to permit the identification
of all data sources. The normal taint propagation focuses on taint attribute propagation,
and pays less attention on the taint record propagation. For example, for a given in-
struction, TEMU checks all its operands, and copies the taint records of the first tainted
operand to the destination operand. This propagation method loses some taint sources.
For example, in the instruction add %ebx, %eax, if eax and ebx are tainted by
different data sources, the taint sources of ebx get lost. To solve this problem, we in-
stead identify all the tainted source operands and copy all distinct taint records to the
destination operand. As a result, the taint records for each operand capture all the data
sources used to derive the operand.

1-Level Table Lookup. If a memory read address is tainted, taint analysis has to de-
cide to propagate the taint to the destination operand or not. Table lookup is a method to
propagate the taint. However, table lookup results in over-tainting problem, leading to a
high false positive. A better tainting method for table lookup is necessary to capture the
read DUI and avoid the over-tainting problem. We observe that as more table lookups
are performed, attackers likely have increasingly less influence over the destination. As
such, we propose the 1-level table lookup: Only propagating the taint for a single level
of memory indexing. When the tainted data retrieved from table lookup are used as an
index again, we will not propagate the taint. Our implementation uses the most signif-
icant bit of the taint attribute to indicate whether it is tainted through table lookup or
not. Note that 1-level table lookup will miss attacks that utilize high-level table lookup
to corrupt memory locations. However, we believe that the benefit on false positive re-
duction overweighs the false negative introduced since attacks with high-level lookup
are rare in real-world attacks. With 1-level table lookup, our tool captures memory read



operations that are strongly controlled by attackers, and skips the weakly-controlled
operations.

Taint Propagation for XMM registers. XMM (eXtended Multi-Media) registers
are used to speed up the memory operation (e.g., memcpy), by joining several 4-byte
copies into a single 16-byte operation. TEMU does not support the taint propagation
through XMM registers. When tainted data are copied into an XMM register, the taint
information gets lost. To support the taint propagation, we extend TEMU to correctly
propagate taint to XMM registers and read taint information from XMM registers.

4.2 Access Formula Generation

We use VINE [42], the static analysis component of BitBlaze, to generate the formula
for memory access from the trace. As discussed in Section 3.3, there are four types of
constraints affecting memory access. However, VINE only generates two constraints,
the data-flow constraint and the control-flow constraint. To bridge this gap, we develop
tools to add additional two constraints into the formula. There are two steps to generate
the memory space constraints.

1. In the guest OS, we insert a kernel module to detect the module loading and un-
loading behaviors. The kernel module sends the update information of the loaded
and unloaded module to TEMU. We log such information together with the number
of traced instructions when a behavior happens.

2. Using the log file, we can construct the readable and writable memory ranges for
each instruction. Specifically, we collect all the modules that are still loaded in the
memory for a given instruction. The union of their readable and writable memory
ranges is the valid memory space. We add the memory range as a memory space
constraint to the access formula.

To generate the data life-cycle constraints for a particular instruction, we search for-
ward from the given instruction in the trace to find the first memory write instruction
that overwrites the data at the same address. We call this instruction the update instruc-
tion. The data life-cycle of the data starts from the given instruction, and ends at its
update instruction.

5 Evaluation

We evaluated our approach in the following system: The host OS is a 32bit Ubuntu
10.04 system, running on Openstack Cloud with two 2.4GHz vCPUs and 4GB RAM.
The guest OS in TEMU is a 32bit Ubuntu 9.10 system. Next, we present our evaluation
results and then discuss the security implication of our findings.

5.1 Efficacy

We applied DUI Detector on privilege-isolated programs to detect DUI vulnerabilities
in protected partitions. We focus on two particular isolation schemes: The isolation



between malicious OS kernels and user space programs [17, 25, 32, 41, 48], and the iso-
lation between malicious libraries and main programs [19, 21, 44–46]. We ran several
programs on Linux system to get the execution trace, which were written to drive the
execution through communications between different partitions. DUI Detector success-
fully detected read DUI and write DUI vulnerabilities in the protected user space code
and the protected program main code. Further, DUI Detector assesses the attackers’ ca-
pability obtained by exploiting such vulnerabilities. Next we present the details of these
DUI vulnerabilities.

User-Kernel Isolation. A few proposals remove the OS kernel from the trusted base of
the program execution, like hardware-based isolation (e.g., Flicker [31]) and hypervisor-
based isolation (e.g., Overshadow [17]). These isolation schemes are designed to protect
the sensitive data in user-space programs from the malicious kernel, so the kernel have
no direct access to program memory space. Our goal is to detect DUI vulnerabilities in-
side protected user-space programs that allow the malicious kernel to corrupt programs’
private user-space memory.

— Glibc code exploitable by brk. A write DUI was detected in the malloc function,
which manages the heap memory for programs. The malloc calls the brk system call
to request a new heap memory and takes the return value as the break value (the upper
bound of data segment). Before looking into the detected DUI, we first illustrate the
logic in malloc handling the return values of brk.

1 addr1 = brk(0); // get the current brk value
2 addr2 = brk(argument); // request more space
3 *(addr1 + 4) = addr2 - addr1; // store the size as metadata

This code snippet calls brk twice to create a heap memory region. The first brk
call on line 1 is used to get the current break value (saved in addr1), which is the start
address of the heap. The second brk call on line 2 is used to request more memory
space and the new break value is stored in addr2. The memory location addr1 + 4
is used to store the size of the allocated data chunk, which is addr2 − addr1 in this
case. The code on line 3 stores the size value into the metadata address. One of our
tested programs invokes the malloc library call to call brk. In the recorded execution
states, we found two instructions that match the write DUI Pattern 1, as listed below.

1 mov %eax, 0x4(%edx)
2 ...
3 mov %eax, 0x4(%edi)

For each instruction, both the value and the memory address are derived from the
return values of brk system calls. By manipulating the system call return values, the
malicious kernel can write any value into an arbitrary address in the victim process,
even if the process is protected by encryption. We analyzed the capability of attackers
and found that only the second instruction is exploitable. For the mov instruction on
line 1, the data life-cycle constraints show that the value is immediately overwritten by
another benign value. For the instruction on line 2, the first return value has to be a



multiple of 8. We show the constraints on the return value generated by our tool below,
where the brkn is the nth return value. DUI Detector generated the payloads in order
to exploit this DUI vulnerability. The generated payloads successfully wrote the given
address to the selected stack address.

1 condition( brk1%8 == 0 && brk2>brk1 )
2 address = brk1 + 0x2718;
3 data = (brk2 - brk1 - 0x2718) | 0x1;

To explore other paths, we changed the condition to invalidate one of the constraints.
The following are two conditions that lead to the write DUIs in other paths. The last one
is the scenario of the Iago attack [15]. Note that DUI Detector accurately identified the
constraints of Iago attack: The address has to be non-multiple of 8 and the data write to
the memory has to be congruent to 1 modulo 8.

1 condition(brk1%8 != 0 && brk1<brk2<brk3)
2 address : relies on brk1;
3 data : relies on brk1 and brk2;

1 condition(brk1%8 != 0 && brk1<brk2>brk3)
2 address : relies on brk1;
3 data : relies on brk1 and brk3;

— Glibc code exploitable by mmap2. The second DUI vulnerability in Glibc is in the
code handling the mmap2 system call. The mmap2 system call on Linux is used to
map files or devices into memory in the Linux system. It is widely used by programs
to map large files into memory. From the execution trace, we identified a total of 1,653
suspicious instructions matching write DUI patterns. We further reduced them to 302
based on the attackers’ capability analysis. Analysis of the remaining 302 instructions
reveals that all of them use values derived from the first 3 mmap2 return values. Here
we show the very first instruction among them. This is a write DUI, where the memory
address and the data are derived from the first and the third mmap2 return values.

1 mov %eax, 0x1ac(%edi)

Using the queries we discuss in Section 3.3, we identified the valid memory space
which the attacker can write values to. For a stack memory range over 0x0BFFF000
to 0x0BFFF2FF, we found that the attacker has no control over addresses whose last
four bits are 1100 or 0100.

— cat exploitable by read and write. The UNIX utility program cat reads
data from the given files, concatenates the content and writes them out to the standard
output file. This behavior results in consecutive file read and write operations. The cat
program we used is a derivative of the BSD cat program1. We identified read DUIs
in the cat code, which can be exploited by malicious kernel to steal program’s private
information. To illustrate the read DUI, we present the pseudo code below.

1 http://www.opensource.apple.com/source/text_cmds/text_cmds-87/
cat/cat.c



1 nr = read(rfd, buf, size);
2 for(off = 0; nr; nr -= nw, off += nw)
3 {
4 nw = write(wfd, buf + off, nr);
5 if (nw == 0 || nw == -1)
6 goto error;
7 }

The loop condition nr is fully controlled by the malicious kernel. First, it is initial-
ized by the return value of the read system call on line 1. For each loop, it is updated
by the return value nw of the write call on line 2. nw is also used to advance the
buffer for the next write call. When the kernel is changed to be untrusted, isolation
mechanisms use deep copy to duplicate all system call parameters to a shared mem-
ory between kernel and process [41]. In this case, by manipulating the return value
nw, the malicious kernel drives the process to copy its private data into shared memory
space. With further capability analysis, we find that the attacker has full control over
the value, i.e., the attacker is able to access any memory with the values ranging from
0x00000000 to 0xFFFFFFFF.

Library Isolation. Dynamic shared libraries are linked to software process at the run-
time. Since the dynamic library lives in the same memory space with the program’s
main code, any vulnerability in the library is inherited by the program. Memory separa-
tion designs [44–46] provide transparent memory isolation between the main code and
libraries. The goal is to prevent the untrusted libraries from directly accessing the main
memory. However, attackers can still leverage the DUIs in the main code to indirectly
access the main memory.

— Programs Using libsdl. The Simple DirectMedia Layer (SDL) library provides
programming interfaces to access low lever hardware, like keyboard, screen, audio and
so on. The main program requests an SDL object and performs operation through the
SDL object. For example, the main program can request a screen object, and then invoke
the screen object methods to set display attributes, like colors and fonts. When the
library isolation technique Codejail [45] is used, the SDL library code cannot directly
access the memory of the main code. A monitor module will selectively commit the
memory changes from the library to the main code. However, the memory isolation
provided by Codejail cannot prevent the memory access from the library to the main
memory through DUIs in the main code. We write a simple program that requests a
screen object from the SDL library and then sets the color attribute. The pseudo code
of the simple program is shown below.

1 screen = SDL_SetVideoMode(...); // get framebuffer surface
2 color = SDL_MapRGB(...); // get a pixel value
3 pixmem16 = screen->pixels + x + y * pixelsperline ;
4 // get pixel address
5 *pixmem16 = color; // set the color



Our tool detected the write DUI in the main code (on line 5) of this simple program.
A malicious SDL library can exploit this DUI vulnerability to corrupt any memory lo-
cation of the main code, even if the main program is protected by memory isolation
schemes. Using attackers’ capability estimation, our tool reports that there is no limita-
tion on the address or value, which means that attackers have full control of the main
code memory through the DUI exploit.

5.2 Performance

Table 1. Performance of DUI Detector. T1 is the time for trace generation; T2 is the time to
get the access formula; T3 is the time to solve the formula. “Inst. #” is the number of executed
instruction, while “Infl. #” is the number of tainted instructions. All times are measured in second.

Trusted Part Untrusted Part APIs DUI Inst. # Infl. # T1 T2 T3
user space Linux kernel brk write 168,089 103 21.79 1.70 0.18
user space Linux kernel mmap2 write 167,644 69,486 21.19 2.94 3.11
cat code Linux kernel read, write read 2,288,914 684 104.76 16.58 0.16
main code SDL library SDL APIs write 100,424,507 68 7574.23 1.52 0.10

Table 1 shows the performance details of each experiment conducted using our
tool. We can see that our tool is able to analyze and detect a DUI vulnerability in a few
minutes. The time required for the generation of the trace is largely dependent on the
number of instructions that are generated and logged in the trace. On the other hand,
the amount of time required for the generation of the STP formula is very small. For
the STP formula solving, the time required highly varies due to its dependence on the
query inputs, formula and how quickly the STP solver can obtain a solution for us.

5.3 Security Implications

Our tool detected DUI vulnerabilities in different program transformation scenarios,
including untrusted kernel isolation and untrusted libraries isolation. In this part, we
discuss the security implications of our findings.

– Simple memory isolation is inadequate to prevent unauthorized memory access.
Although a lot of designs aim to prevent the malicious partition from accessing
the protected memory, our result shows that simple memory isolation cannot com-
pletely stop the unauthorized memory access. DUI vulnerabilities inside the pro-
tected partition still allow other partitions to access arbitrary protected memory.

– API-review is necessary to provide a secure environment. Since DUI vulnerabilities
can be leveraged to mount attacks through interfaces, developers need to pay special
attention to the checking code on interface inputs when the legacy code is retrofitted
into a memory isolation model. More specifically, there is a need to review the
interfaces between trusted and untrusted partitions.



6 Discussion

In this section we present the limitation of our work and discuss the possible defense
against the DUI exploits.

Code Coverage. Our analysis only considers one particular code path executed dur-
ing the trace generation. However, it is possible for the program to have other DUI
vulnerabilities in other paths. We employ an iterative process to detect other DUI vul-
nerabilities. Specifically, after the analysis for one execution path, we invalidate the
path condition in the control-flow constraints and require the solver to provide an input
that satisfies the invalidated condition [23]. The given input makes the program follow
a new code path. The same analysis is performed on it and this process is repeated until
no additional new path can be generated. This may lead to the path explosion prob-
lem [1]. To mitigate the problem, we only invalidate the conditional branches that are
affected by untrusted input to generate the new path. Existing methods to mitigate path
explosion, like [30, 43] can also be considered.

Defense. Once a DUI vulnerability has been identified, developers can mitigate the
consequences of the vulnerability by introducing proper checks to the vulnerable code.
Different checks should be used accordingly based on the type of the interface inputs.
For the Glibc brk attack, where the interface inputs are addresses, the sanitization code
needs to make sure that the returned address either equals to the requested one or points
to a newly allocated memory region. For operation counters (e.g., the return value of
the read system call), sanitization code should perform strict checks on the length,
like comparing it with the file size or the buffer size.

7 Related Works

Vulnerability Detection. Symbolic execution and dynamic taint analysis are two tech-
niques that are commonly used for vulnerability detection. In symbolic execution, the
program is executed with symbols rather than concrete values. Operations on the in-
puts are represented as an expression of the symbols, naturally providing constraints on
possible values of the input after each operation. As a result, symbolic execution [28]
has been extensively used in program testing and vulnerability analysis [8, 12, 13, 34,
40]. Dynamic taint analysis is another technique frequently used to detect vulnerabili-
ties. In taint analysis, attacker-controlled inputs are usually marked with a tag. This tag
is propagated whenever the data is derived from the input. This enables the analyst to
determine the data flow and the attackers’ influence. A series of work has utilized taint
analysis to detect and analyze vulnerabilities [9, 14, 49] and malware [18, 47]. New-
some et al. [36] proposed using dynamic taint analysis to find bugs. In these methods,
attacks are detected when the tainted data are used in a dangerous way, like jump ad-
dress or system call parameters. Our approach differs in application of these techniques.
In order to detect DUI vulnerabilities, our focus is on detecting certain access pattern
while at the same time considering implicit constraints such as memory constraints. As
such, our approach aims to obtain a better understanding of the vulnerability in addition
to detection.



Automatic Exploit Generation. The goal of the automatic exploit generation is to gen-
erate a working payload that successfully compromises the vulnerable program. Heelan
et al. [24] discussed algorithms to automatically generate exploits to hijack the control
flow for a given vulnerable path. Brumley et al. [10] proposed the automatic patch-
based exploit generation for a given vulnerable program together with security patches.
A followup work [2] presents an automatic exploit generation tool for buffer overflow
and format string vulnerabilities. Felmetsger et al. [20] proposed AEG on web applica-
tions. In another work [26] we present an automatic method to generate data-oriented
attacks. Different from these AEG-style approaches, our goal is to estimate the attack-
ers’ capability. Hence, rather than obtaining the payload for a vulnerable program, we
quantify the potential severity of the vulnerability.

Privilege Separation in Software Systems. Privilege separation is a way to realize the
principle of least privilege in software designs. It is often achieved by using memory
isolation to protect resources of high-privileged partitions from low-privileged ones. For
examples, Provos [39] retrofitted OpenSSH with a privilege-separated design and other
methods [6, 11, 27] automatically separate and isolate components within monolithic
legacy programs. Other security solutions proposed new threat models. For example,
some [17, 29, 31] treat the kernel as potentially untrusted and remove it from the trusted
computing base. However, the work [15, 38] shows that just isolating the components is
insufficient as attackers might be able to leverage on poorly designed legacy interfaces
to compromise the isolated components. Our solution complements this work with a
systematic method to detect DUI vulnerabilities when adopting new isolation schemes.

8 Conclusion

In this paper, we present a systematic solution to detect arbitrary memory access vul-
nerability in binary programs. Our approach builds access formula for a binary using
program analysis techniques. The formula is then utilized to detect the memory ac-
cess patterns that can be leveraged by attackers to perform arbitrary memory accesses.
Detailed analysis is also performed to assess the capability of attackers using such vul-
nerabilities. We demonstrate the effectiveness and accuracy of our approach in the eval-
uation, where we present four case studies of DUI vulnerabilities in programs utilizing
isolation schemes. Finally, we provide the security implications based on the results of
the evaluation.
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