
SFuzz: Slice-based Fuzzing for Real-Time Operating Systems
Libo Chen

Shandong University, SJTU

chenlibo147@mail.sdu.edu.cn

Quanpu Cai

SJTU, Alibaba Group

cpeggsjtu@sjtu.edu.cn

Zhenbang Ma

QI-ANXIN

mazhenbang@qianxin.com

Yanhao Wang
∗

QI-ANXIN

wangyanhao136@gmail.com

Hong Hu

Pennsylvania State University

honghu@psu.edu

Minghang Shen

Tencent Security Xuanwu Lab

hadreys1007@gmail.com

Yue Liu

Southeast University, QI-ANXIN

230209311@seu.edu.cn

Shanqing Guo
∗

Shandong University

guoshanqing@sdu.edu.cn

Haixin Duan

Tsinghua University

duanhx@tsinghua.edu.cn

Kaida Jiang

SJTU

kaida@sjtu.edu.cn

Zhi Xue

SJTU

zxue@sjtu.edu.cn

ABSTRACT
Real-Time Operating System (RTOS) has become the main category

of embedded systems. It is widely used to support tasks requir-

ing real-time response such as printers and switches. The security

of RTOS has been long overlooked as it was running in special

environments isolated from attackers. However, with the rapid de-

velopment of IoT devices, tremendous RTOS devices are connected

to the public network. Due to the lack of security mechanisms,

these devices are extremely vulnerable to a wide spectrum of at-

tacks. Even worse, the monolithic design of RTOS combines various

tasks and services into a single binary, which hinders the current

program testing and analysis techniques working on RTOS.

In this paper, we propose SFuzz, a novel slice-based fuzzer, to

detect security vulnerabilities in RTOS. Our insight is that RTOS

usually divides a complicated binary into many separated but single-

minded tasks. Each task accomplishes a particular event in a de-

terministic way and its control flow is usually straightforward and

independent. Therefore, we identify such code from the monolithic

RTOS binary and synthesize a slice for effective testing. Specifically,

SFuzz first identifies functions that handle user input, constructs

call graphs that start from callers of these functions, and leverages

forward slicing to build the execution tree based on the call graphs

and pruning the paths independent of external inputs. Then, it

detects and handles roadblocks within the coarse-grain scope that

hinder effective fuzzing, such as instructions unrelated to the user

input. And then, it conducts coverage-guided fuzzing on these code

snippets. Finally, SFuzz leverages forward and backward slicing

*Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00

https://doi.org/10.1145/3548606.3559367

to track and verify each path constraint and determine whether

a bug discovered in the fuzzer is a real vulnerability. SFuzz suc-

cessfully discovered 77 zero-day bugs on 35 RTOS samples, and

67 of them have been assigned CVE or CNVD IDs. Our empirical

evaluation shows that SFuzz outperforms the state-of-the-art tools

(e.g., UnicornAFL) on testing RTOS.

CCS CONCEPTS
• Security and privacy → Systems security;

KEYWORDS
RTOS; Slice-based Fuzzing; Taint analysis; Concolic execution

ACM Reference Format:
Libo Chen, Quanpu Cai, Zhenbang Ma, YanhaoWang

∗
, Hong Hu, Minghang

Shen, Yue Liu, Shanqing Guo
∗
, Haixin Duan, Kaida Jiang, and Zhi Xue. 2022.

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3548606.3559367

1 INTRODUCTION
A real-time operating system (RTOS) is designed to serve real-

time applications. It has been widely deployed on top of embedded

microcontrollers and CPUs, with even more installations than fully-

fledged operating systems. For example, VxWorks, the industry-

leading RTOS [38], runs on over two Billion devices [33]. Many

industry scenarios of RTOS not only require real-time, deterministic

performance, but also expect safety and security certifications such

as NASA’s InSight Spacecraft [24].

However, it is challenging to apply traditional security mech-

anisms into RTOS due to various development constraints. For

instance, to support immediate responses to real-time tasks, RTOS

abandons the isolation between kernel and user spaces [20] and

runs all tasks in a flat mode to avoid frequent context switching.

In this case, all software modules have unrestricted access to all

data and instructions in memory space [11], which brings more

potential threats to RTOS. This monolithic design was acceptable

485

https://doi.org/10.1145/3548606.3559367
https://doi.org/10.1145/3548606.3559367

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

since RTOS mainly runs in local networks and is isolated from

external threats.

These days, the Internet of things (IoT) connects more RTOS

devices directly to the Internet, which opens the door of RTOS

devices to external attackers. It is urgent to discover vulnerabilities

in RTOS systems before attackers compromise these weak devices.

Although many researchers proposed various bug detection mech-

anisms on embedded devices [7, 9, 21, 31, 44], few of them can

be directly applied to RTOSes. The main reason is that RTOS is

usually presented in a blob-firmware format and barely runs on

microcontrollers and CPUs in a single monolithic execution, includ-

ing kernel module, schedule module, and other task modules. This

feature brings difficulty to traditional bug-detection mechanisms.

For static analysis [9, 31], considering the large size of the mono-

lithic RTOS binary, classic static methods (e.g., symbolic execu-

tion [6, 10, 34]) suffer from path explosion issues. Further, due to

the lack of explicit function symbols and the complexity of RTOSes,

it is hard to reveal the semantics of functions on binary-level. There-

fore, we cannot easily identify modules that are related to sensitive

data, nor conduct any analysis on these modules. Dynamic solu-

tions [7, 21, 37, 44], such as fuzzing, either require actual devices or

rely on correct and steady emulations to test target firmware and

essential services. Since RTOSes from different vendors [15, 16, 38]

employ various peripherals with diverse interfaces, it is challenging

to emulate all real-world scenarios with manageable efforts.

As RTOSes get more attention, several works develop customized

tools for detecting bugs from RTOSes. Zhu et al. [45] introduce a

debugging method to detect vulnerabilities from VxWorks-based

IoT devices. Wen et al. [37] propose to check configuration errors

from bare-metal firmware on BLE devices. However, these methods

either only work on specific devices, rely on real devices [45], or

detect limited bug types [37]. Salehi et al. [32] instrument bare-

metal firmware binaries to make memory corruptions observable.

Clements et al. [12] extend HALucinator [13] to work with Vx-

Works. However, these tools require manual analysis and domain

knowledge, and thus can hardly be applied to diverse RTOS sys-

tems. Many of these works even need the source code of RTOSes to

get more details of the hardware [12, 13] or need much extension

development for efficient fuzz testing [32]. Hence, all of them are

limited by scalability. Overall, there lacks a flexible and general way

to discover vulnerabilities effectively in RTOS.

Despite the numerous difficulties, we notice that specific RTOS

features provide unique opportunities to bypass the testing barri-

ers, like the multi-tasking mechanism. Specifically, RTOS usually

divides a complicated application into many separate but single-

minded tasks. Each task accomplishes a particular event in a de-

terministic way. The control flow of each atomic task is usually

straightforward and independent. More importantly, if these tasks

belong to the same category, their data flow may have similar pat-

terns. Therefore, we search for the data flow that starts from diverse

external data entries to potential sink functions (e.g., memcpy), and

slice the corresponding code snippets among tasks of RTOS. These

slices are small enough to be tested using existing fuzzing logic. Fur-

thermore, they present much smaller but more critical control-flow

scopes. It can sharply alleviate emulation difficulty and analysis

complexity, which will allow us to perform more effective and

efficient testing, like greybox fuzzing and symbolic execution.

Based on our insight, we propose SFuzz, a novel fuzzing method

that leverages forward slicing to construct a tailored code space that

drives greybox fuzzing on the emulator. Then, SFuzz incorporates

backward slicing to perform concolic execution to verify crash

inputs from fuzzing. We design SFuzz with four main components:

Forward Slicer. Our code slicer starts by identifying functions that
handle user inputs. Since RTOS binaries do not have function names,

we define a set of heuristics to locate such functions. After that, we

construct a call graph that starts from one caller of these functions.

Through coarse-grained propagation, we perform forward slicing in

this call graph by pruning paths independent of external inputs. We

also modify conditional branches irrelevant to inputs to ensure the

control flow reaches potential sink functions. Because of covering

the data-sharing paradigm with direct physical memory access

(frequently used in RTOS), our forward slicer can flexibly extend

across different tasks and dynamically stitch paths in execution.

Control Flow Node Handler. The fuzzing engine will lack the

full context and runtime state of the RTOS if it directly executes

the code snippets. Hence, Control Flow Node Handler is used to

guide the fuzzer to determine how to handle the function calls

and conditional branches unrelated to the user inputs, helping

the fuzzing engine increase the efficiency and stability of path

exploration.

Micro Fuzzing. Our fuzzing engine focuses on instructions in

the pruned execution tree. Starting from the input source, it up-

dates the execution context through instruction-level emulation.

The fuzzing engine will execute input-related code snippets and

ignore massive unnecessary paths, including other input handlers.

To inspect dangerous behaviors, it monitors the contexts of sink

function calls and reports potential bugs when the contexts violate

pre-defined safety policies.

Concolic Analyzer. To fetch missed context information in the

pruned call graph, we recover modified conditional branches and

symbolize the context of ignored functions. Then, we perform

concolic execution based on the forward slice and use the bug-

triggering input to provide the concrete value. We execute back-

ward slicing that starts from the sink function to the written object

allocation position and other input reference sites. Then, we per-

form symbolic execution starting from the ending of backward

slices to get constraints of object size and iterate every predicate

of other input to check whether the corresponding condition is

necessary or not. At last, we can realize a complete and accurate

path condition to evaluate a vulnerability.

We implement our prototype of SFuzz based on Ghidra [17] and

UnicornAFL [25] with around 6,200 lines of Python code, 4,300

lines of C code, and 5,100 lines of Java code. To understand the

efficacy of SFuzz in detecting security vulnerabilities in RTOS, we

apply our tool to 35 firmware samples from 11 vendors. SFuzz

successfully discovered 77 unknown vulnerabilities in these latest-

version firmware samples. We also compare SFuzz with the state-

of-the-art tools, and SFuzz outperforms all compared tools.

In summary, we make the following contributions:

• We propose a slice-based method to test RTOS, which utilizes

forward slicing to prune control flow for efficient fuzz testing,

and incorporates backward slicing to validate alerts from fuzzing.

486

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

• We design and implement SFuzz
1
, which performs slice-based

fuzzing through cross-platform CPU emulation to effectively

detect vulnerabilities in RTOS firmware.

• We evaluated SFuzz on 35 real-world RTOS firmware samples

from 11 vendors and discovered 77 unknown bugs. 68 bugs have

been assigned CVE/CNVD IDs.

2 PROBLEM AND APPROACH OVERVIEW
In this section, we first provide the background of vulnerabilities in

RTOS. Then, we present the overview of our approach and discuss

the associated challenges.

2.1 RTOS and Embedded Devices
The Real-Time Operating System (RTOS) is designed to provide a

deterministic execution pattern. It focuses on timely task execu-

tion and works for embedded devices with real-time requirements,

such as printers, switches, and routers. Because of the limitation of

memory space and the requirements for fast task scheduling and

quick response (i.e., performance constraints) [20, 31], some ven-

dors compile their RTOS into a single binary with all functionalities.

Meanwhile, they also strip the system symbols to reduce the size

of binary files. These factors bring challenges for researchers to

emulate the whole system or analyze the security of the embedded

devices that use RTOS as their operating system.

However, these devices (i.e., printers, routers, and so on) usually

receive data packages from the outside (e.g., network, Bluetooth,

and so on) and parse them to finish various tasks, providing attack-

ers with ways to hijack them. Meanwhile, these devices are usually

the critical points of the home network or Local Area Network

(LAN). Without state-of-the-art defense mechanisms, such as Exe-

cutable Space Protection [23] and stack canary [14], attackers pay

a lot of attention to them and like to hack them through their data

entries. Hence, it is necessary for security researchers to overcome

the challenges and propose a proper method to detect vulnerabili-

ties in the embedded devices that are easy to touch through their

data entries.

2.2 Motivation Example
Listing 1 shows a simplified snippet that contains a buffer over-

flow error in Line 40. We found this bug in the RTOS of TP-Link

WDR7660 using our tool, SFuzz, and reported it to its vendor. The

bug has been fixed and assigned a CVE number CVE-2020-28877.

The functionality of this code snippet is to receive data from out-

side (Line 7) and call the corresponding function set to handle

the data package (Line 9-44). In detail, it first steps into function

protocol_handler (Line 9) to check the basic format and size of

the package header (Line 15), match the magic bytes (Line 16), and

check the integrity of the whole package (Line 17). If the input

package satisfies all constraints, the execution will step into the

function msg_handler (Line 18) to call the corresponding handler

(Line 24) based on the version of the package (Line 23). Function

parse_advertisement resolves and extracts the header of the struc-

ture element (Line 35-36), which is the basic data unit in the pack-

age’s payload, and copies the element to a memory space (Line 40).

Because the length of the data section in the structure element is

1
We will release the source code at https://github.com/NSSL-SJTU/SFuzz.

1 void devDiscoverHandle(int sockfd) {
2 int len, ret;
3 struct sockaddr_in src_addr;
4 int addrlen = sizeof(struct sockaddr_in);
5 memset((uint8 *)&src_addr , 0, 0x10);
6 memset(Global_addr , 0, 0x5C0);

7 len = recvfrom(sockfd, Global_addr+0x1c, 0x5a4, 0, (struct
sockaddr *)&src_addr , (socklen_t *)&addrlen);

8 if (len != ERROR)
9 ret = protocol_handler((packet *)(Global_addr+0x1c));

10 if (ret == ERROR)
11 logOutput("devDiscoverHandle Error!");

12 }

13 int protocol_handler(packet *data) {
14 bytes[4] = {0xe1, 0x2b, 0x83, 0xc7};

15 if (header_check(data))
16 if (magic_check(data->magic_bytes , bytes, 4))
17 if (checksum(data))
18 return msg_handler(data);
19 return ERROR;
20 }

21 int msg_handler(packet *data) {
22 int ret = ERROR;
23 if (data->version == 0x01)
24 ret=parse_advertisement(data->payload, data->payloadLen);

25 return ret;
26 }

27 int parse_advertisement(uint8 *payload, int payloadLen) {
28 char* dst;
29 char* var_addr;
30 char buffer[64];
31 int index;
32 var_addr = DAT_404d33a8;

33 msg_element *element;

34 msg_element_header *element_header;

35 element = parse_msg_element(payload, payloadLen);

36 element_header = element->header;

37 if (element_header) {
38 index = (int)*(var_addr+4));
39 dst = buffer+index;

40 if (copy_msg_element((char *)element->data, dst,
element_header ->len)) == 0) //Stack Overflow

41 return SUCCESS;
42 }

43 return ERROR;
44 }

Listing 1: Pseudocode of the simplified motivation example.

recorded in its len field, an attacker could trigger a stack overflow

vulnerability here via accurately constructing a package and setting

the value of len larger than the length of the buffer used to store

the data section.

Unfortunately, current bug-finding techniques for embedded

systems cannot detect this vulnerability effectively. Dynamic solu-

tions, like fuzzing and emulation, cannot guarantee to emulate a

whole RTOS with closed hardware features and cover all program

states, especially for the specific code parsing the self-defined data

format. For example, suppose we have a device and want to use

the recent work SRFuzzer [43] to identify this bug. In that case, we

have to leverage reverse engineering to analyze all data formats

the device can handle and then generate and send requests to trig-

ger the handling logic code. It requires a high labor cost, and the

requirements for analysts are very high. Static approaches such

as KARONTE [31] and SaTC [9] cannot effectively locate the data

entries in a monolithic RTOS binary. For example, KARONTE only

focuses on the data related to the inter-process communication

and SaTC takes the keywords used to mark the user input to find

487

https://github.com/NSSL-SJTU/SFuzz

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

0 2 4 6 8 10 12 14 16
Num of Functionality Snippets

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Function
Global Variable

Figure 1: (1) Distribution of functions w.r.t. the number of function-
ality snippets they belong to. 75% of functions in the functionality snip-

pets we identified only belong to one functionality snippet, and less than

5% of functions are shared by more than six functionality snippets. (2)
Distribution of global variables w.r.t. the number of functionality
snippets they are used in. 87% of global variables in these functionality

snippets are only used in one functionality snippet. These results show that

most functionality snippets are independent of each other.

the data entry. Moreover, the complex code logic (we simplify the

control flow graph of the snippet in the motivation sample) in the

snippet is hard for them to conduct static taint analysis or symbolic

execution to efficiently find the sensitive path from the data entry

point (e.g., recvfrom) to the sink function (e.g., memcpy).

2.3 Necessity and Reasonability of SFuzz
According to the above analysis and comparison, the dynamic

method is more applicable in detecting RTOS bugs than the static

analysis method. However, without much manual analysis and a

robust full-system emulation method, how can we effectively detect

these vulnerabilities in the real-time operating systems of various

embedded devices via a dynamic method?

Our intuition is that conducting fuzzing on functionally indepen-
dent snippets is an effective way to discover bugs in RTOSes, and we

name it slice-based fuzzing. Suppose we collect a program slice

containing the complete function set that receives and handles the

corresponding data package. We can effectively and reasonably

detect the vulnerabilities in the piece of code via hybrid fuzzing and

instruction-level emulation. Moreover, we can ignore the difficulties

of emulating various hardware and service features.

Consider the sample in Listing 1, after identifying the data-

receiving function (Line 7) and all the functions related to the

package handling (e.g., copy in Line 40), we could construct the

code snippet and generate input to trigger the stack overflow vul-

nerability through coverage-guided hybrid fuzzing. Due to lacking

complete context while executing the code snippet, we need to

handle the control flow nodes unrelated to the external package to

make fuzzing efficient and stable. Once the vulnerability is found,

we do a concolic analysis based on the input that triggers the vulner-

ability, and obtain a final result, including the complete constraints

related to the control flow nodes we handle, to help us determine

whether the vulnerability is a false positive. As we see, the explo-

ration scope of our method is limited to risky code snippets by

static analysis. Meanwhile, we only use symbolic execution to help

us create new test cases while the fuzzing gets stuck, and verify the

crash result. These make our method, compared with the traditional

static analysis and symbolic execution methods, could have better

performance and mitigate the path explosion problem.

To prove the reasonability of the slice-based fuzzing method

on RTOS, we selected systems of four embedded devices from

two vendors (i.e., TP-Link and MERCURY) to check whether their

functions can be divided into task-specific, independent snippets.

We choose these four devices because they all contain symbol files

or log functions, which facilitate our judgment on the functionality

of each function and the manual verification of the result. We search

all types of data read-in points in the system, such as the recvfrom

function, and take their caller functions (e.g., devDiscoverHandle)

as the root points of the data handling trees and the specific task

modules. Then we recursively search the function calls existing in

a root point function and its children functions and form a function

set. We use the name of a root point function to name its function

set (as listed in the UpSet figure). In theory, these function sets

should correspond to different data read-in points, data processing

tasks, and functionalities. And only in this way can prove our

slice-based fuzzing method is reasonable. The less intersection of

functions between different function sets, the higher the functional

independence of each set.

Because the verification results of the four devices are similar,

we take TP-Link WDR7660 as an example to illustrate their results.

We provide the CDF diagram to simplify the presentation of the

distribution of the function intersection between different func-

tionality snippets. As Figure 1 shows, few of the functions (less

than 25%) belong to more than one set. According to our analysis,

the intersection mainly comes from two aspects. One is the func-

tions (e.g., recvfrom, memcpy, and so on) of the standard library, and

different functionalities will use them. The second is the similar-

ity between different function sets. Although these function sets

have different data entry points, they handle similar data packages,

such as bindRequestHandle and registerRequestHandle. We also

provide an UpSet figure (Due to the page limitation, we put it on

Github
2
), a visualization technique for the quantitative analysis

of sets, to show the details of the intersection between different

function sets collected from the RTOS.

To further study the coupling metrics of modules in RTOS, we

inspect the shared data among tasks in the above four embedded de-

vices. The result shows that the ratio of global variables employed to

share data among functionality snippets is low. We identified 14,592

global variables, 207 of which are used in the functionality snippets

we identified, and only 27 global variables are shared by different

snippets (less than 13%, listed in Figure 1). Furthermore, we check

the data-sharing paradigm through shared keywords operated by

several API couples (e.g., set_env and get_env), as presented in

KARONTE [31] and SaTC [9]. This data-sharing paradigm is preva-

lent in embedded systems due to its convenience. We find no data

sharing among functionality snippets in these four samples that

utilize corresponding API couples.

2
https://github.com/NSSL-SJTU/SFuzz/blob/main/motivation_upset.md

488

https://github.com/NSSL-SJTU/SFuzz/blob/main/motivation_upset.md

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Sensitive Call
Graph

Constructor
RTOS

Firmware
Forward Slicer

Call Graph
Pruning

Micro
Fuzzing

Crash
Input

Call Graph
Stitching

Execution
Tree

Symbolic Execution
based on

Forward Slicing

Condition Verifier
based on

Backward Slicing

Concolic Analyzer

PoC

Control Flow
Nodes Handler

Semantic
Reconstruction

Figure 2: Overview of SFuzz. SFuzz takes the firmware of the real-time embedded devices as input and outputs their bug reports. It first recovers the

semantic of the functions in RTOSes and uses the forward slicer and Control Flow Nodes handler to extract the code snippet related to the outside inputs. And

then, it uses the emulation execution and coverage-based fuzzing to explore the paths in the sliced execution tree. Finally, it constructs the proof-of-concept

based on the concolic analyzer.

The above analysis shows that these function sets collected from

RTOS meet the characteristics of functional independence concern-

ing control flow and data flow. Hence, the experiment result verifies

the reasonability of the slice-based fuzzing method.

2.4 Challenges of Slice-based Fuzzing
To apply our method to RTOS of various embedded devices, we

need to address three main challenges.

C1. How to determine the scope of the snippets? Firstly, we
need methods to identify the data read-in functions no matter

whether the target RTOS contains symbol files. Secondly, we need

an approach to determine the scope of the snippet corresponding

to a data receiving point. Constructing the functionality set via

function calls will include some paths and functions unrelated to

the processing logic for the input data. Meanwhile, some paths that

cannot touch the sink function will also be included in the scope.

Both of them will affect the efficiency of slice-based fuzzing.

C2. How to handle the points related to control flow in the
snippet? Some function calls and conditional branches will affect

the reachability of the execution path
3
and the efficiency of fuzzing.

For example, some functions that the emulator cannot emulate

will affect the path reachability. Another example, some compare

instructions will use global variables or the variables unrelated to

the input we are mutating. Because we cannot mutate the values

of these variables via seed mutation, we cannot control the jump

direction of the following branches of these compare instructions.

C3. How to effectively conduct slice-based fuzzing and ver-
ify the PoC?On the one hand, the pure fuzzing technique is hard to
generate valid seeds to pass various kinds of condition guards with-

out any prior knowledge of the application or input format [30, 35].

Similar to Driller [35], we combine fuzzing with symbolic execu-

tion to make path exploration more effective. On the other hand,

because we conduct fuzzing on code snippets and preprocess some

instructions related to control flow, we need to design a method to

judge whether a proof of concept (PoC) results in a crash is a real

vulnerability in the original RTOS.

3 DESIGN
ApproachOverview. In this paper, we design SFuzz to address the
above challenges and leverage the slice-based fuzzing technique

3
Execution Path is a sequence of instructions executed by the target firmware from a

data receiving point with a specific test case.

to detect vulnerabilities in code snippets of RTOS of embedded

devices. As Figure 2 shows, SFuzz takes the firmware of the real-

time embedded devices as input and outputs their bug reports. It

first recovers the semantic of the functions in RTOSes and uses

the forward slicer and Control Flow Nodes handler to extract the

code snippets related to the outside inputs. And then, it uses the

slice-based fuzzing technique to explore the execution tree
4
of the

code snippet. Finally, it constructs the proof-of-concept based on

the concolic analyzer.

In detail, the forward slicer combines the call graph analysis

with the forward taint analysis to determine the exploration space

of each task for slice-based fuzzing; Control Flow Nodes Handler is

used to help the following fuzzing part skip the unnecessary path

exploration and those nodes which will make the fuzzing phase

get stuck; the micro fuzzing engine is a hybrid greybox fuzzer,

which combines some low-level techniques, such as error detection

policies, to make the fuzzer could run smoothly and find errors; the

Concolic Analyzer is mainly to help us filter false positives due to

exploration pruning and context missing.

3.1 Forward Slicer
To conduct the slice-based fuzzing on functionality snippets of the

target RTOS, we first recover the semantic of the critical functions

in the firmware (details listed in §4) to locate the external data

entry points (e.g., recvfrom), global data sharing functions (e.g.,

nvram_get) and vulnerable functions (e.g., memcpy), and then lever-

age the forward slicer module to output the execution tree related

to handling the external input and global data.

Forward Slicer contains three parts, and its workflow is shown

in Figure 2. The Sensitive Call Graph Constructor detects input

obtaining functions (e.g., recvfrom in Listing 1) and global data

read points, and then takes the callers of these functions as root

nodes to build call graphs
5
. To make the fuzzing test focus on

the vulnerable path, we prune the branches that cannot touch

potential sink functions (i.e., memcpy, strcpy, sprintf, and so on) in

the graphs. The Call Graph Pruning component further prunes the

subgraphs or paths that are independent of external input. Finally,

the Call Graph Stitching component splices some edges between

4
Execution Tree merges all execution paths from one data receiving point taken as a

root node, and every node in the tree represents an instruction forking a new path

from the current path, such as branch and function call instructions.

5
A call graph is a control-flow graph, which represents calling relationships between

functions in a program. Each node represents a function and each edge (f, g) indicates

that function f calls function g.

489

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

1 /*date set point*/

2 char *var = WebGetsVar(a1, "wanPPPoEUser");
3 nvram_set("wan0_pppoe_username", var);

4 /*data get point*/

5 sprintf(usename, "wan%d_pppoe_username", var);

6 char *var1 = nvram_get(usename);

Listing 2: Code Samples for Call Graph Stitching (dynamicmethod).

the nodes of different call graphs. These edges are missing while

building these call graphs due to the lack of direct correlation.

Call GraphPruning. To judgewhether an external input or global
data could affect the parameters of the potential sink functions,

SFuzz leverages lightweight (coarse-grained) taint analysis tech-

nology to track each path (from the root node to the leaf node) in

the call graph, determines the possible scope of the influence of the

external input and global data, and filters the paths independent of

them. Here we describe the high-level design of the taint engine.

For each call path, the taint engine steps into the function body of

each node in the path. It marks the parameters or return values of

the input reception and parsing functions as taint sources based on

the functions’ semantic, such as the parameter Global_addr+0x1c

of recvfrom in Listing 1, the memory space which points to is used

to store the input data. While conducting the taint analysis on each

instruction, the taint engine firstly translates instructions into inter-

mediate instructions whose semantic are simpler than the assembly

instructions of various disparate architectures. And then, for each

intermediate instruction, it includes the output operand(s) of the

instruction into the tainted operands set if the input operands are

affected by the external input. For function call instruction whose

callee does not belong to the call path, the taint engine will prop-

agate the taint attribute from its tainted parameters to the return

value. If the risky parameter(s) of the sink function (e.g., count for

function memcpy(*dest, *src, count)) are affected by the input, SFuzz

retains the corresponding call path.

Call Graph Stitching. As KARONTE [31] and SaTC [9] proposed,

some data-flow of external input could be interrupted by data shar-

ing paradigms (e.g., set_env and get_env). Unfortunately, RTOS

also faces the same challenge. Unlike the previous approach, in

addition to using static analysis to splice the deterministic asso-

ciated nodes, we also use dynamic technique to detect the non-

deterministic correlation between the data set and use point(s). For

the data sharing paradigms (i.e., set and use point) labeled with

constant strings, we search and match them based on the constant

strings. Then connect the two call paths and use a virtual node

(i.e., two-tuples, such as <nvram_set, nvram_get>) to represent the

paradigm in the merged call graph. For the paradigms marked by

dynamically created variables, such as "wan%d_pppoe_username"

in Listing 2, we get these paradigms based on the approximate

string matching method and create a virtual condition node to con-

nect the potential data sharing paradigms. And then determine

whether jump to the global data read point based on the actual

value of the variable during emulation execution. For the set points

that have many corresponding get points, we also build a virtual

condition node and determine the jump direction based on random

probability.

3.2 Control Flow Nodes Handler
After the handling of the Forward Slicer module, we could build an

execution tree of the target code snippet based on the call graph.

However, to make the fuzzing test on the execution tree work

smoothly and avoid unnecessary path exploration, we still need to

handle several types of instructions related to control flow (i.e., (i)

function call, (ii) conditional branch), which will affect the reacha-

bility of the execution path and the efficiency of the test. In other

words, because of lacking full context and runtime state of the

RTOS, we need strategies to guide the fuzzer to determine how to

handle the function call in the snippet and choose which branch of

the conditional statement to jump.

Call Instruction. On the one hand, we add the address of the

function call instruction, whose callee’s parameters are not affected

by the external input, into PatchedFunc set and guide the fuzzer to

skip the function call. We do this mainly because its arguments are

unrelated to the input, and its return value and parameters will not

be changed via mutating the seed input. Hence, patching this kind

of function will help the fuzzer ignore its complexity and increase

the fuzzing efficiency. On the other hand, for all the function calls

that belong to the sensitive call graphs or whose arguments are

affected by the input, such as protocol_handler and header_check

in Listing 1, we keep them. Only by stepping into these functions

can we ensure the reachability of the sensitive path.

Conditional Branch. A conditional statement directs the control

flow to a target address only if the specified branch constraint is

satisfied. However, while conducting fuzzing on code snippets, we

have to face a problem determining the direction of the conditional

jump if the condition has no relationship with the input data, which

means we cannot change the jump direction by mutating the input.

To make the fuzzing test more effective and sound, we propose

several methods for handling various conditional branches.

• Assuming only one branch of a conditional jump instruction is

reachable to the sink function. If its condition is affected by the in-

put, we insert the target address of the unreachable branch to the

PatchedJMP set, which guides the fuzzer to avoid exploring this

branch. Otherwise, we add the address of the jump instruction

into PatchedJMP set and guide the fuzzer to replace the condi-

tional jump with the fixed jump to the reachable branch.

• Suppose both branches of a conditional statement are reachable to

the sink functions. If its constraint is not related to the input data,

we add the address of the instruction into the PatchedJMP set,

which guides the fuzzer to replace the instruction with a random

jump statement. Otherwise, we do not change the code. It is

mainly to help us explore as many paths that are not determined

by the input as possible.

• If no branch of a conditional jump instruction is reachable to the

sink function, we add the target addresses of the two branches

to the PatchedJMP set, which will guide the fuzzer to exit the

current path exploration when encountering these addresses.

3.3 Micro Fuzzing
As the core of our fuzzing engine, we name the slice-based fuzzing

technique asMicro Fuzzing. It takes code snippets as input, explores
paths in the execution tree, and ignores irrelevant call sites and

other input data handlers. The engine simultaneously inspects the

490

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

context of sink function call sites and exports crash input when

memory access against pre-defined policies.

Image Loader. After loading the RTOS firmware, the image loader

will preprocess the tailored code snippets marked by the previous

module. For the call instruction should be skipped (in PatchedFuncset),

the image loader replaces the call instruction with NOP-like in-

struction. For the branch that should avoid being explored (in

PatchedJMPset), SFuzz adds the AvoidExplore statements to its tar-

get address. When the program executes to the corresponding

address, the program will exit the current path exploration directly.

For the branch which should be replaced with a fixed jump or

random jump, SFuzz handles it with the corresponding operation.

Fuzzing Engine. When the core engine is invoked, it loads the

RTOS system and repeatedly executes the target code snippets from

its beginning (the root node of the execution tree). This engine will

generate random data in input entry points. Based on UnicornAFL,

this engine can perform coverage-guided fuzzing and emulate in-

structions execution on this tailored execution tree. When the core

fuzzing engine gets stuck, the hybrid fuzzer invokes its concolic

execution component. This component randomly selects an input

from the seed queue and symbolizes each byte in the input. After

tracing the execution path corresponding to the input, the concolic

execution component utilizes its constraint-solving engine to iden-

tify inputs that would force execution down previously unexplored

paths. The fuzzing engine will exit if no new path is found within

a threshold time.

By pruning unnecessary paths, Micro Fuzzing ignores input-

irrelevant function calls (in PatchedFuncset) and executes NOP-like

instruction instead. On the other hand, it directly skips emulation-

hard instructions, avoidsmarked condition branches (in PatchedJMPset),

and allocates concrete data when pointer reference to uninitialized

memory. The emulation-hard instructions are usually related to

interrupts interacting with hardware or HAL (hardware abstraction

layer) modules (e.g., send a signal to the CPU scheduler) and do

not affect the data-flow starting from input sources. Thus, skipping

these instructions in emulation brings fewer side effects. Finally,

these two ways make the emulation more stable and focus on ex-

ploring the code snippets handling the target input data.

Memory Safety Policies. Because bare-metal [32] and RTOS

devices often lack memory sanitizer mechanisms due to cost sen-

sitivity and resource constraints. Thus, SFuzz needs to provide

lightweight memory safety check policies for the fuzzing engine,

which define the violation of memory access in call sites of sink

function. Here we focus on detecting the bugs that occur in memory

buffer operation. We classify memory buffer into two categories:

the buffer that can be statically analyzed to determine the size (in-

cluding the buffer on the stack, the buffer created via a malloc-like

function, the global variable that can be identified its size based on

adjacent variables, etc.), and the buffer that cannot determine its

size statically. For the buffer whose size can be statically identified

(SFuzz conducts the analysis in the forward slicer module), we de-

termine whether an overflow has occurred by detecting whether

the buffer boundary data has been modified after executing the

sink function. For the buffer whose size cannot be determined, we

directly output an alarm and further identify the buffer size in the

subsequent concolic analyzer module.

Algorithm 1 The workflow of Concolic Analyzer.

1: function ConcolicAnalyzer(CrashInput, RTOSProject)

2: Trace← Tracer(CrashInput, RTOSProject)

3: TargetSink← GetSinkPoint(Trace)

4: CompletePoC← ∅
5: State← SimulationStart(RTOSProject)

6: State.AddConcreteConstraints(CrashInput)

7: while State.active do ⊲ State still satisfies all constraints
8: if isTargetSinkFunc(State, TargetSink) then
9: StateConstraints← BackwardSlicing(State).Constraints()

10: for constraint ∈ StateConstraints do
11: if ReSymexec(RTOSProject, constraint.invert(), CrashInput, TargetSink) then
12: StateConstraints.remove(constraint)

13: end if
14: end for
15: if SinkBufferDeterminable(StateConstraints) then
16: OutputCompletePoC(StateConstraints, CrashInput, RTOSProject)

17: return
18: end if
19: else
20: if State ∈ PatchedFuncset then
21: SymValues← SymRetValue(State)

⋃
SymArgsValue(State)

22: State.AddNewSymbols(SymValues)

23: else if State ∈ PatchedJMPset then
24: State.SetJumpDirection(Trace)

25: end if
26: end if
27: State.Step() ⊲ Step to next concolic state

28: end while
29: OutputFailedInfo(CrashInput, RTOSProject) ⊲ State cannot reach sink

30: end function

3.4 Concolic Analyzer
When the Micro Fuzzing engine exits, Concolic Analyzer will check
all crash inputs that have triggered violations. It takes these cases

as concrete inputs and conducts concolic execution in the corre-

sponding execution paths for constraint solving.

As the pruned function call instructions (in PatchedFuncset)

and conditional branches (in PatchedJMPset) might be misleading

control flow in the original execution tree, thus we need to check

whether a crash input could trigger a real vulnerability in the origi-

nal RTOS. To conduct this check, Concolic Analyzer first recovers

these branches and symbolizes parameters and return values in

these patched functions call sites, and then performs concolic test-

ing based on forward and backward slicing.

The workflow is shown in Algorithm 1. In detail, the forward
slicing-based concolic testing part takes a crash input as the concrete

value to perform concolic execution on the path triggered by the

input. If a function call site in the path belongs to PatchedFuncset,

it will apply new symbols to the function’s arguments and return

value. It collects all constraints along with the execution path until

reaching the sink function. For constraints related to the other input

data entry points or patched functions, the backward slicing-based
condition verifier flips each constraint once at a time and reruns

the symbolic engine from the beginning with the given inverted

constraint. If the symbolic engine can still reach the sink function,

the corresponding constraint is judged as non-required for the

current PoC. For constraints related to sink buffer size that has

not been determined in former modules, the verifier calculates its

value and only alerts when sink buffer size can be determined and

is overflowed by input data.

We use a real-world sample (CVE-2021-32186) to present how

the concolic analyzer works. As Listing 3 shows, nvram_set and

491

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

1 void vulnSet(webRequest* a1, webRequestData* a2)
2 {

3 char *ledStatus;
4 char *ledClsTime;
5 char *ledTime;
6 char argbuf[0x100];
7 int ledCtlType;
8 ledClsTime = webVar(a1, "LEDCloseTime");// Input

9 ledStatus = webVar(a1, "LEDStatus"); // Other input #1

10 ledCtlType = nvram_get("led_ctl_type"); // Other input #2

11 if (strcmp(ledCtlType , ledStatus))
12 nvram_set("led_ctl_type", ledStatus);

13 if (!strcmp("2", ledStatus)) {
14 ledTime = nvram_get("led_time"); // Other input #3

15 sub_800D487C(a2, argbuf);

16 if (strcmp(ledTime, ledClsTime))
17 nvram_set("led_time", ledClsTime); // Global data set

18 }

19 }

20 void vulnGet()
21 {

22 char v8[64];
23 memset(v8,0,sizeof(v8)); // Written object

24 ledTime = nvram_get("led_time"); // Global data get

25 strcpy(v8, ledTime); // Sink

26 }

Listing 3: Code Sample for Concolic Analyzer

nvram_get construct a data sharing paradigm. The data source la-

beled by "LEDCloseTime" is passed toNVRAM (Non-volatile random-

access memory) when another data labeled by "LEDStatus" is set

to "2", and then can trigger a stack buffer overflow in vulnGet.

Forward slicing-based concolic testing. After getting a crash

input, Micro Fuzzing also outputs the corresponding execution

path, including the input entry point and the sink function call site.

As Listing 3 shows, the entry point is in Line 8, and due to this

slice being stitched by data sharing paradigms, the sink point in

current function vulnSet is nvram_set (Line 17). Thus, we perform

concolic testing from Line 8 and check execution path conditions in

Line 17. In this process, the symbolic execution engine collects path

constraints, including the symbolic expression of parameters and

return values from other input data reading functions in Line 9, 10,

and 14. At last, the path conditions (Line 17) contain all these other

input data because they respectively constitute branch conditions

in Line 11, 13, and 16.

Backward slicing-based condition verifier. Although an exe-

cution path constraint could present a specific constraint set that

every input data should satisfy, it still lacks critical information in

two parts: first, whether the constraints on other input data are

necessary or not, which will bring false negative in bug detection;

second, the size constraint of the object written by the sink function,

which will bring false positive and false negative. Accordingly, we

solve problems in two aspects:

• As vulnSet in Listing 3 shows, backward slicing starts from the

sink function in Line 17 and backward tracks the execution path.

By inspecting the execution path condition in the sink function,

we extract constraints that include other input data and locate

corresponding source positions as endpoints of backward slicing

in Line 9, 10, and 14. We invert these constraints and rerun the

symbolic execution individually, checking satisfiability by sym-

bolic execution from the endpoint of corresponding backward

slicing. If the state could still reach the sink function, the con-

straints are proven to be unnecessary for sink reaching. At last,

we can remove non-essential constraints (Line 11) and contain

necessary conditions (Line 13 and 16).

• As vulnGet in Listing 3 shows, backward slicing start from the

sink function in Line 25 and backtracks the execution tree. In

this process, backtracking focuses on the current function scope,

captures any memory handler function related to this written

object, and sets the farthest call site as the ending (Line 23).

At last, symbolic execution starts from the endpoint and solves

constraints of allocation size by leveraging function semantics

of relevant handlers.

4 IMPLEMENTATION
We implement the prototype system of SFuzz with around 6,200

lines of Python code, 4,300 lines of C code, and 5,100 lines of Java

code. The taint analysis module and semantic recovery part are

implemented based on Ghidra [17]. The fuzzing engine is built

based on UnicornAFL and Driller [35], and the concolic analyzer is

implemented based on Angr [36]. We extended Driller to make it

work for RTOS images, including re-implementing its trace logger

based on our self-designed RTOS loader to track the execution trace

of the target code snippets. Our system is based on several basic

procedures as follows:

ImageExtraction. We leverage strings embedding in the firmware

to identify the type of RTOS (e.g., VxWorks 5.5.1) and leverage Bin-

Walk to extract the content of the RTOS image. Meanwhile, for

disassembling the content, we use the feature of the machine code

in the image to determine the type of CPU architecture (e.g., MIPS).

BaseAddress Recognition. Becausemany data reference or func-

tion call operations in RTOS systems are dependent on the base

address, and wrong addresses will result in incorrect data references

or control flow jumps. We implemented this part based on the core

idea that only the correct base address can link the most data reference
pointers with the intended targets. The method is proposed in Vx-

hunter [45] and used in some related works, such as FirmXRay [37].

This module contains two steps to recognize the base address. It

first identifies and extracts the data reference pointers from the sys-

tem; secondly, it matches the absolute address of the data pointers

with the intended targets. It should be claimed that (i) we only use

string pointers to help recognize the based address, which is good

enough (as the result in §5.4 shows); (ii) we implement this method

based on PCode, which is Ghidra’s intermediate representation for

assembly language instructions, instead of the instructions of a

specific architecture. Therefore, it could support more architecture.

Function Semantic Reconstruction. As explained in §3.1, we

need function semantic to guide the taint analysis and locates the

sensitive snippets. SFuzz mainly recovers the semantic and func-

tionalities of three types of functions: (i) the functions that receive,

parse or share the external input data (i.e., user input); (ii) the sink

functions (e.g., memcpy); (iii) the functions that set or get global

data. We implement four methods to automatically recover the

function semantics of functions and identify sensitive functions.

• Symbol File & Log Function. According to our analysis, some

vendors (e.g., TP-Link and MERCURY) will release the symbol

files that label the name of the functions; meanwhile, the log

492

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 1: Dataset of device samples. We selected 35 device samples from

11 vendors, including router, firewall, printer, switch and BCI on four ar-

chitectures. Size represents the sum size of the samples collected from the

corresponding vendor before unpacking.

Vendor Type Series OS # Size Architecture

Sonicwall Firewall TZ/SOHO VxWorks 2 153M MIPS(BE)

RIOCH Printer SP/AficioSP VxWorks 4 41M ARM(LE)

Xerox Printer WC/Phaser VxWorks 4 66M ARM(LE/BE)/MIPS(BE)

CISCO Switch SG VxWorks 1 7M ARM(LE)

Linksys Switch LG VxWorks 1 7M ARM(LE)

Tenda Router AC eCos 7 14M MIPS(LE/BE)

FAST Router FAC/FW eCos 3 4M MIPS(LE)

MERCURY Router MW/M/D VxWorks 3 6M ARM/MIPS(LE)

TP-Link Router WDR VxWorks 6 11M ARM(LE)/MIPS(BE)

D-Link Router DIR eCos 3 3M MIPS(LE/BE)

Vendor* BCI BCI_V1 FreeRTOS 1 2M ARM LE

Total 5 17 3 35 314 4

functions used to output the runtime error are also can be used

to recover the function names. According to our analysis, some

vendors (e.g., TP-Link and MERCURY) retain symbol files that

can label the names of the functions in the firmware. Mean-

while, some vendors use log functions to output the runtime

error, which can also help recover the function names, such as

devDiscover in the statement logOutput(ostream, "devDiscover:

error, ret = %d", retcode).

• Virtual Execution. Firstly, the method compares the number of

the target function’s arguments and return value with the stan-

dard library functions to find the potential matching functions,

such as strcpy. Secondly, it allocates memory space, initializes

the state of registers, and sets the initial values of the arguments

for the function. At last, it simulates code in the function body

and determines the matching function by analyzing the value of

output and the memory space the simulation affects. We leverage

this method to recognize the standard library functions, such as

memcpy and printf.

• Web Service Semantic. We leverage the shared strings used

to mark the user input both in the front-end files (e.g., HTML,

PHP, and JavaScript) and back-end files to recover the semantic

of some functions related to the web services. We implemented

this approach based on the method proposed in SaTC [9].

• Open source firmware. Some vendors select open-source RTOS

projects to build their systems, such as eCos and FreeRTOS. For

these types of systems, after identifying their version while pre-

processing the firmware, we can leverage B2SFinder [42] and

some other tools [41] to match the functions in the firmware

with the functions in the open-source projects based on strings,

immediate, and other explicit features embedded in the code.

5 EVALUATION
For evaluation of our approach, we should answer the following

research questions:

• RQ1. Can SFuzz discover real-world vulnerabilities in RTOS of

embedded devices? (§5.1)

• RQ2. Whether each part of SFuzz is necessary for effectively

discovering bugs in RTOS? Compared with state-of-the-art tools,

how does our tool perform? (§5.2 and §5.3)

• RQ3. Is SFuzz accurate and efficient for vulnerability discovery

in each step? (§5.4)

Table 2: Experiment configurations. ✔ indicates feature enabled; ✗

means feature disabled. FuncCall represents function call Instruction,

CBranch represents conditional branch.

Experiment Coverage-Guided Symbolic Handler for Handler for
Fuzzing Execution FuncCall CBranch

SFuzz ✔ ✔ ✔ ✔
SFuzz-Handler ✔ ✔ ✗ ✗
SFuzz-FHandler ✔ ✔ ✗ ✔
SFuzz-CHandler ✔ ✔ ✔ ✗
UnicornAFL ✔ ✗ ✗ ✗

Dataset. As shown in Table 1, we collected 35 firmware samples

from 17 series in 11 vendors. These devices cover three RTOS types

and supply various services, including 23 routers, seven printers,

two firewalls, two switches, and one BCI (Brain-Computer Inter-

face). Among these samples, seven devices adopt the MIPS-BE

architecture, 13 adopt the MIPS-LE architecture, and one adopts

the ARM-BE architecture, while the other 14 use the ARM-LE ar-

chitecture. On average, each firmware is 9 megabytes, and SFuzz

processed up to 314 megabytes in total.

Environment Setup. Our experiments run on a Ubuntu 18.04

host with a RAM of 256 GB and a 32-core Intel Xeon Processor

of 2.4 GHz. Especially, we set the time limit for the fuzzing part

of each experiment to be six hours when handling one data entry

point and operated each experiment with one CPU core. According

to our observation, none of the experiments could find new paths

or crashes after this timeline.

Experiments Design. To answer the RQ2, we design five experi-

ments that test the selected RTOS with different configurations, as

shown in Table 2. SFuzz is a full-featured fuzzer, which utilizes the

handler for function calls and conditional jump instructions, and

the symbolic execution engine to boost the fuzzer. SFuzz-Handler

does not use the control flow node handler (§3.2) to process the

critical nodes related to control flow. SFuzz-FHandler only handles

the conditional branch statements, while SFuzz-CHandler merely

handles the function call instructions. The last experiment is con-

ducted using the existing state-of-the-art fuzzer for code fragments,

UnicornAFL [25], and we improved its program loader to make it

work for various RTOS firmware in our dataset. Note that the vanilla

greybox fuzzer (e.g., UnicornAFL) and other methods (e.g., SFuzz)

are deployed on the same original execution tree
6
from the begin-

ning point. Then, each method applies tailored strategies according

to their respective principles.

Bug Confirmation. Each alert produced by SFuzz contains a

unique crash input from the source point and symbolic expressions

for the path constraint, which may include other data sources or

global variables. We manually verified each alert, and only it can

result in a real bug we consider it is a vulnerability.

5.1 Real-world Vulnerabilities
SFuzz found 77 new bugs

7
in 20 firmware samples of different

devices, including router, printer, firewall, and BCI. By the time of

submission, 68 of them have been confirmed by the vendors, and

6
All paths that begin from an external data entry point (i.e., an instruction) in the

target RTOS form one original execution tree.

7
All bugs are listed at https://github.com/NSSL-SJTU/SFuzz/blob/main/rw_vuls.md.

493

https://github.com/NSSL-SJTU/SFuzz/blob/main/rw_vuls.md

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

Web Parser

NVRAM Handler

JSON Parser

Socket Handler

Config File Parser

Event Parser

Env Handler
0

10

20

30

40

50

B
ug

 N
um

be
r

39

20

7 7

2 1 1

(a) Types of Input Receiving Points

Tenda
FAST
MERCURY
TP-Link
D-Link
SonicWall
RIOCH
Vendor*
Xerox

HTTP
UDP

Bluetooth

Local Server
0

20

40

60

80

100

71

4
1 1

(b) Types of Service Protocols

Tenda
FAST
MERCURY
TP-Link
D-Link
SonicWall
RIOCH
Vendor*
Xerox

Figure 3: Statistics of Input Receiving Points types and Service Pro-
tocols types corresponding to the real-world vulnerabilities.

67 have been assigned CVE or CNVD IDs (46 CVE and 21 CNVD,

64 are high severity); 9 bugs are still waiting for responses from the

vendors. Figure 3 shows the types of data receiving points and tasks

of the snippets corresponding to these bugs. In detail, these bugs

exist in many different tasks, such as HTTP, UDP, and Bluetooth.

Moreover, the input data comes from several data sources, such as

Web parser, NVRAM handler, and Socket handler. Additionally, we

list detailed case studies of revealed bugs in our dataset
8
.

5.2 Comparison with Existing Methods
To understand the contribution of SFuzz’s every component for

fuzzing result and performance, and analyze the actual performance

of our tool compared to other "similar" tools, we design this experi-

ment. Because all these works cannot be directly applied to RTOSes

and are difficult to migrate to RTOSes, we simulate these works, as

experiment setup part shows. The strategies used in SFuzz-FHandler

are a superset of the strategies used in T-Fuzz [26], and T-Fuzz is

not entirely open-source and cannot be used on code snippets of

RTOS. Hence, here we use SFuzz-FHandler to represent T-Fuzz.

Meanwhile, SFuzz-Handler equals to a version of Driller [35] for

code fragment execution. We feed all these tools with the same

execution trees collected from five devices and start them from the

same source points that read the data package. According to the

experiments on five tools, we compare their performance in three

aspects: effectiveness, stability, and efficiency.

Effectiveness. As shown in Table 3, all 5 tools can find vulnerabil-

ities in real devices to a certain extent, ranging from 4 to 34. Both

UnicornAFL and SFuzz-Handler can only find bugs from 4 execu-

tion trees, and they only explored 1,390 and 1,366 execution paths.

When we applied Cbranch patch on the basis of SFuzz-Handler

(i.e., SFuzz-FHandler or T-Fuzz), we can see that although the num-

ber of explored paths has increased by 149% to 3,397, the actual

number of bugs that can be found is basically the same. When we

applied FuncCall patch on the basis of SFuzz-Handler (i.e., SFuzz-

CHandler), although path exploration only increased by 23%, 17

bugs were found on 19 execution trees. Our complete method com-

bines the above modes and can finally trigger up to 134 unique

crashes on 105 execution trees on 5 models and discover 34 bugs.

And SFuzz outperforms all compared tools.

8
https://github.com/NSSL-SJTU/SFuzz/blob/main/cases

Table 3: Compared with other tools. #Path represents the number of

paths that can be discovered by each tool. #ExecTree represents the number

of the execution trees that contain crashes. #CrashInput represents the

number of inputs resulting in unique crashes. #Bug represents the number

of real-world bugs that can be discovered.

Mode Device #Path #ExecTree #CrashInput #Bug

UnicornAFL

Tenda AC11 269 3 3 3

TP-Link WDR7660 206 0 0 0

RICOH SP221 26 0 0 0

FAST_FAC1200R_Q 838 0 0 0

MERCURY_M6G 51 1 2 1

Total 1,390 4 5 4

SFuzz-Handler

Tenda AC11 269 3 3 3

TP-Link WDR7660 211 0 0 0

RICOH SP221 26 0 0 0

FAST_FAC1200R_Q 814 0 0 0

MERCURY_M6G 46 1 3 1

Total 1,366 4 6 4

SFuzz-FHandler

Tenda AC11 1,629 4 5 4

TP-Link WDR7660 462 0 0 0

RICOH SP221 120 1 6 1

FAST_FAC1200R_Q 1,149 0 0 0

MERCURY_M6G 37 1 4 1

Total 3,397 6 15 6

SFuzz-CHandler

Tenda AC11 409 15 18 13

TP-Link WDR7660 234 2 5 2

RICOH SP221 25 0 0 0

FAST_FAC1200R_Q 947 1 1 1

MERCURY_M6G 64 1 3 1

Total 1,679 19 27 17

SFuzz

Tenda AC11 1,841 34 46 25

TP-Link WDR7660 754 19 19 2

RICOH SP221 141 1 6 2

FAST_FAC1200R_Q 1,364 46 57 3

MERCURY_M6G 79 5 6 2

Total 4,179 105 134 34

Stability. To compare the stability among these tools, we inspect

the successful simulation ratio among all fuzzing executions on five

devices. As shown in the results
9
, different devices have different

stability variations among tools, but we still find that FHandler (han-

dles the function call instructions) improves the stability greatly. In

detail, the stability of Tenda AC11 has increased from 6.02% (SFuzz-

Handler) to 97.69% (SFuzz-CHandler), and TP-Link WDR7660 has

increased from 27.98% (SFuzz-Handler) to 64.62% (SFuzz-CHandler).

On the other hand, CHandler (handles the conditional branches)

brings some lightly adverse effects. Thus, SFuzz applies both FHan-

dler and CHandler and can maintain satisfactory stability.

Efficiency. When checking time consumption in these five tools,

we find that the more complicated methods are applied, the more

time is spent on testing. The experiment result
10

demonstrates the

average fuzzing time different tools spend on each device. In detail,

UnicornAFL, SFuzz-Handler, SFuzz-FHandler, SFuzz-CHandler, and

SFuzz take 293s, 723s, 909s, 1,006s, and 1,049s on average in fuzz

testing on one execution tree of one device, respectively. It shows

that SFuzz spends more time but maintains an acceptable range.

9
https://github.com/NSSL-SJTU/SFuzz/blob/main/success_rate.md.

10
https://github.com/NSSL-SJTU/SFuzz/blob/main/avg_time.md.

494

https://github.com/NSSL-SJTU/SFuzz/blob/main/cases
https://github.com/NSSL-SJTU/SFuzz/blob/main/success_rate.md
https://github.com/NSSL-SJTU/SFuzz/blob/main/avg_time.md

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 4: Compared with traditional symbolic execution. SE means

symbolic execution tool, SE+Handler represents the combination of sym-

bolic execution tool and control flow node handler.

Device Bug IDs Time-to-Exposure (TTE)
SFuzz SE SE+Handler

Tenda AC11

CVE-2021-31755 7min42s 42min15s 18min44s

CVE-2021-31756 44min08s ✗ ✗

CVE-2021-31757 1min42s 8min35s 6min09s

CVE-2021-31758 40min42s ✗ 87min21s

CVE-2021-32180 4min21s ✗ 19min19s

CVE-2021-32181 45min25s ✗ ✗

CVE-2021-32186 16min13s 243min14s 130min12s

CVE-2021-32187 45min28s ✗ ✗

CVE-2021-32188 54min56s ✗ ✗

CVE-2021-32189 40min05s ✗ 141min51s

CVE-2021-32190 44min30s ✗ ✗

CVE-2021-32191 3min18s 28min31s 11min07s

CVE-2021-32192 32min57s ✗ 81min05s

CVE-2021-34100 33min03s ✗ 62min04s

CVE-2021-34102 59min41s ✗ ✗

CNVD-2021-33391 45min28s ✗ ✗

Reported Issue 1 45min34s ✗ ✗

Reported Issue 2 55min40s ✗ ✗

Reported Issue 3 8min19s ✗ 29min28s

Reported Issue 4 42min12s ✗ ✗

Reported Issue 5 7min37s 38min14s 19min55s

Reported Issue 6 27min33s ✗ 50min51s

Reported Issue 7 7min48s ✗ 12min20s

Reported Issue 8 56min29s ✗ ✗

Reported Issue 9 46min17s ✗ ✗

Path 2,484 491 389

TP-Link WDR7660

CVE-2020-28877 26min45s ✗ 190min57s

CNVD-2021-39128 26min18s ✗ 217min20s

Path 235 40 83

RICOH SP 221

CNVD-2021-42364 22min28s ✗ ✗

CNVD-2021-42365 10min12s 178min12s 97min04s

Path 122 95 38

FAST FAC1200R_Q

CVE-2021-33374 43min45s ✗ 142min20s

CNVD-2021-39243 4min36s 212min53s 16min05s

CNVD-2021-39287 31min13s ✗ ✗

Path 815 143 411

MERCURY M6G

CNVD-2021-39284 33min17s ✗ ✗

CNVD-2021-41097 16min11s 226min24s 46min54s

Path 53 107 72

5.3 Comparison with Symbolic Execution
We conduct comprehensive experiments to compare SFuzz with

traditional symbolic execution (SE) techniques. Since no existing

SE tools can directly test RTOSes, we implement a prototype by

ourselves based on Angr [36], a popular and well-maintained SE

tool. We list the results in Table 4. The result shows that the slicing

method significantly boosts the efficiency of bug discovery. We also

add the Control Flow Nodes Handler of SFuzz to the SE tool. The

result shows that the handler can boost the performance of SE on

bug discovery and path exploration.

Bug number. SFuzz can find 34 bugs in five vendors’ samples.

Symbolic execution (SE) only reveals eight bugs. With the help of

the Control Flow Nodes Handler, SE+Handler can discover 19 bugs.

Time-to-Expose. SFuzz reveals bugs in a shorter time than the

other methods. For Tenda samples, SFuzz reveals one bug in 33

mins, SE+Handler takes 52 mins, and SE needs 72 mins; For TP-

Link, SFuzz discovers one bug in 27 mins, SE+Handler takes 204

mins, and SE cannot find any bug; For RICOH samples, SFuzz reveals

one bug in 16 mins, SE+Handler takes 97 mins, and SE needs 178

mins; For FAST, SFuzz finds one bug in 27 mins, SE+Handler takes

79 mins, and SE needs 213 mins; For MERCURY, SFuzz finds one

bug in 38 mins, SE+Handler takes 47 mins, and SE needs 226 mins.

Path exploration. Our slicing method helps fetch more paths

than others and is more suitable in the fuzzing scenario than in

symbolic execution. For Tenda samples, SFuzz can explore 2,484,

SE+Handler executes 389, and SE runs 491 paths; For TP-Link,

SFuzz can explore 235, SE+Handler performs 83, and SE only runs

40 paths; For RICOH, SFuzz can explore 122, SE+Handler runs 38,

and SE runs 95; For Fast, SFuzz can explore 815, SE+Handler runs

411, and SE only executes 143; For MERCURY, SFuzz can explore

53, SE+Handler runs 72, and SE runs 107. In total, SFuzz explores

3,709, SE+Handler executes 993, and SE only runs 876 paths in

these samples. It should be noted that SFuzz runs fewer paths in

MERCURY because it gets bugs in quite a shorter time than others.

5.4 Accuracy and Efficiency
In this section, we evaluate the accuracy and efficiency of each part

of SFuzz, including Forward Slicer (i.e., Semantic Reconstruction

and Forward Slicing), Micro Fuzzing, and Concolic Analyzer.

Semantic Reconstruction. Among our dataset, 31 samples can

be analyzed by SFuzz. The base address recognition model can cor-

rectly recognize the base addresses of 25 firmware samples. And

six models (FAST FW325R, FAST FW313R, MERCURY MW325R,

TP-Link WDR5660, Tenda AC5, and Tenda AC6V2) cannot be rec-

ognized automatically, and their base addresses are determined

by manual analysis. Through verification using symbol tables and

manual effort, we found that most of the semantics automatically

recovered by SFuzz are accurate, and the cross-validation accuracy

rate is more than 90%. In detail, the semantics of seven models were

recovered via the symbol file recovery method. The web service

semantic recovery method recognized the semantics of web input

functions of seven Tenda devices. The virtual execution method can

be used to restore the semantics of 24 samples. Eight models use

the log function patterns to restore their function semantics. Espe-

cially in RICOH-SP330 (a printer), SFuzz finds only one user-input

data reading function (i.e., os_file_get). Hence it only extracts one

corresponding sensitive call graph. Additionally, we present a list

of all revealed Input Sources and Sink Functions in our dataset
11
.

Forward Slicer. To understand the accuracy of the slicing method,

we need to check whether this method leads to missing sensitive

data-flow influence based on global variables, which are referenced

in the scope of patched functions handled by the control flow code

handler. Thus, we measure the possible impact on the data flow

and control flow, and specifically, we count how much the patched

function can affect the input data and branch conditions through

global variables. Finally, we count each proportion to the patched

functions. As shown in Table 6, the two ratios in these models all

maintain a low range (4.67% and 4.33%), meaning the possibility of

sensitive data-flow leakage through global variables is sustainable.

To review the efficiency of the slicing method, we need to com-

pare the size of our slices with the entire binary and check how

many function call instructions and condition branches are handled

in our slices, and in these handled positions, how many sites will be

11
https://github.com/NSSL-SJTU/SFuzz/blob/main/source_sink.md

495

https://github.com/NSSL-SJTU/SFuzz/blob/main/source_sink.md

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

Table 5: Performance of the static analysis part. #CG represents the number of input-related call graphs. Rate.Func represents the ratio of the number

of functions in the call graphs to the total functions. Rate.Call represents the proportion of the function call instructions handled by SFuzz in call graphs.

Rate.CJmp represents the proportion of the condition branches handled by SFuzz in call graphs. TRate.Call represents the proportion of the function call

instructions (handled by SFuzz) triggered in fuzzing. TRate.CJmp represents the proportion of the condition branches (handled by SFuzz) triggered in fuzzing.

Vendor Model #CG Rate.Func Rate.Call Rate.CJmp TRate.Call TRate.CJmp Time

D-Link DIR100 8 1%(34/2507) 84%(158/188) 20%(39/197) 29%(46/158) 14%(1/7) 22.4

D-Link DIR613 62 6%(227/4059) 95%(7853/8269) 6%(299/5302) 12%(943/7853) 13%(6/45) 3304.7

FAST FAC1200R_Q 71 3%(307/9719) 74%(2559/3449) 50%(1054/2116) 30%(766/2559) 13%(58/437) 945.9

MERCURY M6G 7 1%(138/11588) 76%(613/806) 24%(173/720) 9%(58/613) 7%(8/120) 309.4

RICOH SP 221 6 2%(421/19134) 65%(1497/2313) 27%(732/2718) 2%(30/1497) 0%(0/59) 910.3

RICOH SP 330 1 0%(27/36112) 87%(65/75) 12%(6/49) 22%(14/65) 0%(0/2) 31

TP-Link WDR7660 27 2%(151/9425) 90%(1078/1196) 44%(304/684) 10%(112/1078) 15%(15/100) 2459.8

TP-Link WDR7661 26 2%(144/9152) 90%(1048/1159) 44%(291/662) 11%(120/1048) 16%(15/94) 2411.5

Tenda AC6V2 44 2%(156/7164) 94%(4416/4685) 9%(216/2411) 33%(1446/4416) 29%(16/56) 789.8

Tenda AC8 42 2%(150/8531) 95%(4304/4550) 9%(202/2301) 41%(1750/4304) 22%(12/55) 641

Tenda AC11 42 2%(156/8554) 95%(4443/4697) 9%(210/2402) 37%(1642/4443) 22%(13/58) 976.5

Average - 31 1.52% 89.32% 18.02% 24.71% 13.94% 1163.8

Table 6: Data-flow influence of global variables. #Input represents the
num of functions by FuncCall patched that can impact input data through

global variables. #Branch represents the num of functions by FuncCall

patched that can impact condition branches through global variables.

#Patched represents the total number of functions by FuncCall patched.

Rate.Input represents the proportion of patched functions that impact in-

put data to all patched functions. Rate.Branch represents the proportion of

patched functions that impact branch conditions to all patched functions.

Vendor Model # Rate.

Input Branch Patched Input Branch

D-Link

DIR100 0 0 158 0% 0%

DIR613 14 9 7,853 0% 0%

FAST FAC1200R 216 200 2,559 8% 8%

MERCURY M6G 115 115 613 19% 19%

RICOH

SP 221 52 47 1,497 3% 3%

SP 3500SF 14 14 301 5% 5%

TP-Link

WDR7660 64 52 1,078 6% 5%

WDR7661 63 51 1,048 6% 5%

Tenda

AC6V2 59 51 4,416 1% 1%

AC8 54 47 4,304 1% 1%

AC11 61 53 4,443 1% 1%

Average - - - - 4.67% 4.33%

triggered in the following fuzzing process. As shown in Table 5, the

ratio of the number of functions in the sliced call graphs to the total

functions is 1.52% on average. Thus, it shows that our slices are small

enough to save analysis effort. In these call graphs, the proportion

of the function call instructions and condition branches handled

is 89.32% and 18.02% on average. Moreover, 24.71% and 13.9% of

handled call instructions and condition branches are triggered in

the subsequent fuzzing process. Thus, it proves these pruned sites

are necessary and indeed make efforts in the following process.

Micro Fuzzing. In Table 7, the Forward Slicer of our tool can find

340 unique execution trees that could introduce bugs among 11

differentmodels. TheMicro Fuzzing engine identifies 245 vulnerable

sink functions and constructs crash inputs corresponding to these

potential bugs. The average analysis time on one execution tree

varies from less than 7 minutes to over half an hour. And the total

Table 7: The result of Micro Fuzzing. #Tree represents the number of

execution trees which are found by the Forward Slicer. #VSink represents

the number of vulnerable sink function call sites identified by Micro Fuzzing.

Avg.Time represents the average timeMicro fuzzing spends on one execution

tree. Total Time represents the total time Micro fuzzing spends on one

model. Total Paths represents the number of all explored execution paths.

Vendor Model #Tree #VSink Avg.
Time

Total
Time

Total
Paths

D-Link

DIR100 8 7 658.75 5,270.00 108

DIR613 62 43 668.48 41,446.00 721

FAST FAC1200R 71 46 1,069.97 75,968.00 756

MERCURY M6G 7 5 494.86 3,464.00 34

RICOH

SP221 6 1 454.17 2,725.00 98

SP330 1 1 1,244.00 1,244.00 20

TP-Link

WDR7660 29 19 2,075.34 60,185.00 2,640

WDR7661 28 19 2,175.23 56,556.00 2192

Tenda

AC6V2 44 34 674.86 24,970.00 1,062

AC8 42 34 1,034.39 39,307.00 1,398

AC11 42 36 1,150.93 48,339.00 1,841

Total - 340 245 - 359,474 10,870

analysis time for one model ranges from 20 minutes to 21 hours,

depending on the complexity of the execution trees to explore.

Concolic Analyzer. Micro Fuzzing module ignores other input

data that may influence the execution path of bugs, and the patched

control flow nodes may affect inputs we mutate. Thus, the number

of unique crashes acquired from fuzzing in sink function call sites

is often larger than real bugs. As shown in Table 8, SFuzz can find

115 alerts in 302 unique crashes and capture 67 other inputs in

PoC results. By manual effort, we locate 16 false-positive cases

among these alerts and eight false-negative cases that SFuzz cannot

reveal. Due to page restrictions, we present the reason and how

to determine these cases on Github
12
. Finally, SFuzz can discover

99 real bugs (One bug may exist in multiple devices of one vendor.

Thus, the sum of unique bugs is 69—precisely, three duplicates in D-

Link, two duplicates in RICOH, and 25 duplicates in Tenda) among

107 bugs of these devices (the unique bugs count is 75).

12
https://github.com/NSSL-SJTU/SFuzz/blob/main/discussion.md

496

https://github.com/NSSL-SJTU/SFuzz/blob/main/discussion.md

SFuzz: Slice-based Fuzzing for Real-Time Operating Systems CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 8: The result of Concolic Analyzer. #CI represents the unique

crash inputs found by Micro Fuzzing. #OI represents the number of other

inputs in PoC results. #Alert represents the bug number verified by Concolic

Analyzer. #FP represents the number of false-positive cases. #FN represents

the number of false-negative cases. #Bugs represents the number of real

bugs. Avg.Time represents the average time spent on concolic testing.

Vendor Model # Avg.

CI Alert OI FP FN Bugs Time(s)

D-Link

DIR100 7 6 0 2 1 5 36.86

DIR613 43 22 6 9 0 13 294.02

FAST FAC1200R 57 3 11 0 1 4 776.66

MERCURY M6G 6 3 0 1 1 3 73.25

RICOH

SP221 6 2 0 0 0 2 181.00

SP330 18 2 0 0 0 2 635.00

TP-Link

WDR7660 19 2 0 0 0 2 2,226.84

WDR7661 20 1 0 0 0 1 2,240.00

Tenda

AC6V2 39 22 14 2 1 21 264.82

AC8 41 26 20 1 2 27 712.31

AC11 46 26 16 1 2 27 661.91

Total - 302 115 67 16 8 107 -

6 RELATEDWORK
RTOS Security. Armis Labs [2] reveals critical zero-days that can

remotely compromise the most popular real-time OS, Vxworks [33],

and demonstrates how to take over an entire factory by leveraging

these discovered vulnerabilities [18]. Zhu et al. [45] introduce how

to find vulnerabilities with fuzzing and debugging VxWorks devices.

However, current methods are not generic and rely on equipment

for debugging [45] or need heavy labor for manual analysis [33].

Symbolic Execution. Under-constrained symbolic execution [28]

and compositional symbolic execution [1, 27] can analyze programs

in the UNIX operating system, such as UC-KLEE [28], RWSet [3],

and their improved methods [4, 22, 40]. They identify critical data

(e.g., Read&Write Sets [3], Relevant Location Set [4]) that affect

reachability to new code, and detect and eliminate redundant states

and paths when exploring code space. Our slicing method prunes

paths based on whether the current function is related to handling

the external input or not. Exploring these irrelevant functions does

not help bug discovery, but may make the instruction emulation fail

or make the testing stuck. Therefore, eliminating paths in SFuzz is

designed to boot fuzzing in RTOS and independent of these works

in principle and target. UC-KLEE [28] performs a function-scope

analysis and suffers from missing inter-procedural data flow. More-

over, these advanced approaches [1, 3, 4, 27, 28] are all designed for

checking source code or IR, which are popular at full-fledged OS but

scarce at RTOS. Thus, these methods need massive effort for scal-

ing on the binary of RTOS and have high computation complexity

when running on low-level instructions. Note that SFuzz performs

the symbolic execution based on symbolizing concrete inputs no

matter in the Micro Fuzzing engine and Concolic Analyzer module.

Thus, they iterate branches in a path triggered by this concrete

value (e.g., crash input) and mitigate the path explosion problem.

Greybox Fuzzing & Dynamic testing. AFLGo [5] proposes di-

rected greybox fuzzing, which makes a fuzzer generate inputs to

efficiently reach a given set of target program locations (i.e., vul-

nerable functions). Hawkeye [8] evaluates exercised seeds based

on static information and the execution traces to generate the dy-

namic metrics, which help Hawkeye achieve better performance

to touch the target sites. However, directed fuzzing aims to reach

sensitive locations, regardless of roadblocks in execution paths that

hinder efficient fuzzing and steady emulation in RTOS. Similarly,

IntelliDroid [39] can directly generate inputs that trigger targeted

Android APIs as an over-approximation for malicious behaviors

and allow the dynamic analysis to decide whether they are mali-

cious. However, it must work with full-system dynamic analysis

tools (e.g., TaintDroid), which is hard to be satisfied in RTOS. HAR-

VESTER [29] integrates program slicing with dynamic execution to

automatically extract runtime values from highly obfuscated An-

droid malware. These advanced testing methodologies work well

on full-fledged OS. However, due to the lack of a stable system-wide

emulation solution for RTOS, they can not succeed without a grey-

box environment for inspecting the context of the target program

on the fly. Note that our slicing determines a coarse scope of the

tainted data and tailors roadblocks that hinder efficient fuzzing and

steady emulation in the RTOS binary. They make the subsequent

fuzzing process work fluently and effectively on code snippets in

terms of instruction flow without a system-wide emulation. Ap-

plying the directed fuzzing strategies may improve efficiency, and

we will integrate them in future work.

Code Fragment Execution. Several methods have been proposed

to directly test vulnerable functions hidden in the "deep" code.

Ispoglou et al. [19] present a tool FuzzGen that can automatically

synthesize fuzzers for triggering deep code in libraries within a

given environment. However, FuzzGen needs to compile the source

code of the target library and its consumers to infer the library’s

interfaces. Voss [25] designs UnicornAFL that adds the Unicorn-

based test harness to normal AFL. Thus, it can fuzz binary codes

with many CPU architectures, including ARM, X86, etc. However,

UnicornAFL only emulates instructions, cannot emulate peripheral

interaction and inter-procedural scheduling, and usually fails in

executing related instructions (e.g., interrupt) either.

7 CONCLUSION
We propose SFuzz, a novel slice-based fuzzing method, to detect

security vulnerabilities in RTOS. Based on the insight that an RTOS

monolithic system can be split into meaningful code slices, SFuzz

leverages forward slicing to construct a tailored execution tree

that is small enough to drive greybox fuzzing on the emulator

and utilizes forward and backward slicing to perform concolic

testing to verify unique crashes from fuzzing. SFuzz has successfully

discovered 77 zero-day software vulnerabilities in 20 RTOS devices,

and 67 have been assigned CVE or CNVD IDs. Our evaluation result

shows that each part of SFuzz helps it outperform the state-of-the-

art tools (e.g., UnicornAFL) in discovering bugs in RTOS.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of this work for their helpful

feedback. This research is supported, in part, by Shandong Provin-

cial Natural Science Foundation under Grant No. ZR2020MF055,

ZR2021LZH007, ZR2020LZH002 and ZR2020QF045, and Science

and Technology Commission of Shanghai Municipality Research

Program under Grant 20511102002.

497

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Libo Chen et al.

REFERENCES
[1] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven

Compositional Symbolic Execution. In 2008 14th Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). ETAPS, 367–381.

[2] Armis. 2021. Home - Armis. https://www.armis.com/. (2021).

[3] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking

Path Explosion in Constraint-Based Test Generation. In 2008 14th Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). ETAPS, 351–
366.

[4] Suhabe Bugrara and Dawson Engler. 2013. Redundant State Detection for Dy-

namic Symbolic Execution. In Proceedings of the 2013 USENIX conference on
Annual Technical Conference (USENIX ATC ’13). 199–212.

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 2329–2344.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted

and automatic generation of high-coverage tests for complex systems programs.

In OSDI, Vol. 8. 209–224.
[7] DamingDChen,MaverickWoo, David Brumley, andManuel Egele. 2016. Towards

Automated Dynamic Analysis for Linux-based Embedded Firmware. In NDSS,
Vol. 1. 1–1.

[8] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, and Xiuheng

Wu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
2095–2108.

[9] Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan, Hong Hu, Jiaqi Linghu,

Qinsheng Hou, Chao Zhang, Haixin Duan, and Zhi Xue. 2021. Sharing More

and Checking Less: Leveraging Common Input Keywords to Detect Bugs in

Embedded Systems. In 30th USENIX Security Symposium (USENIX Security 21).
[10] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

platform for in-vivo multi-path analysis of software systems. Acm Sigplan Notices
46, 3 (2011), 265–278.

[11] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast Srivas-

tava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. 2017. Protecting bare-metal

embedded systems with privilege overlays. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 289–303.

[12] Abraham A Clements, Logan Carpenter, William A Moeglein, and Christopher

Wright. 2021. Is Your Firmware Real or Re-Hosted?. In Workshop on Binary
Analysis Research (BAR), Vol. 2021. 21.

[13] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David

Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.

2020. HALucinator: Firmware re-hosting through abstraction layer emulation.

In 29th USENIX Security Symposium (USENIX Security 20). 1201–1218.
[14] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-

guard: Automatic adaptive detection and prevention of buffer-overflow attacks.

In USENIX Security Symposium.

[15] eCos. 2021. eCos Home Page. https://ecos.sourceware.org/. (2021).

[16] FreeRTOS™. 2021. Real-time operating system for microcontrollers. https:

//www.freertos.org/. (2021).

[17] Ghidra. 2021. Ghidra. https://ghidra-sre.org/. (2021).

[18] Barak Hadad and Dor Zusman. 2020. From an URGENT/11 Vulnerability to a

Full Take-Down of a Factory, Using a Single Packet. In Black Hat Asia.
[19] Kyriakos Ispoglou, Daniel Austin, VishwathMohan, andMathias Payer. 2020. Fuz-

zgen: Automatic fuzzer generation. In 29th USENIX Security Symposium (USENIX
Security 20). 2271–2287.

[20] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung

Lee, Xiangyu Zhang, and Dongyan Xu. 2018. Securing Real-Time Microcontroller

Systems through Customized Memory View Switching. In NDSS.
[21] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and

Yongdae Kim. 2020. FirmAE: Towards Large-Scale Emulation of IoT Firmware

for Dynamic Analysis. In Annual Computer Security Applications Conference.
733–745.

[22] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun,

and Taesoo Kim. 2017. CAB-Fuzz: Practical Concolic Testing Techniques for

COTS Operating Systems. In Proceedings of the 2017 USENIX conference on Annual
Technical Conference (USENIX ATC 17). 689–701.

[23] Microsoft. 2006. Data Execution Prevention (DEP). (2006). http://support.micr

osoft.com/kb/875352/EN-US/.

[24] NASA. 2021. Command & Data-handling Systems. https://mars.nasa.gov/mro/

mission/spacecraft/parts/command/. (2021).

[25] Nathan Voss. 2017. afl-unicorn: Fuzzing Arbitrary Binary Code. https://hacker

noon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf. (2017).

[26] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by

program transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 697–710.

[27] Dawei Qi, HOANG D. T. NGUYEN, and Abhik Roychoudhury. 2013. Path explo-

ration based on symbolic output. ACM Transactions on Software Engineering and
Methodology 22, 32 (2013), 1–41.

[28] David A. Ramos and Dawson Engler. 2015. Under-Constrained Symbolic Execu-

tion: Correctness Checking for Real Code. In 24th USENIX Security Symposium
(USENIX Security 15). 49–64.

[29] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.

Harvesting Runtime Values in Android Applications That Feature Anti-Analysis

Techniques. In NDSS, Vol. 16. 21–24.
[30] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware evolutionary fuzzing. In

Proceedings of the 24th Network and Distributed System Security Symposium. The

Internet Society.

[31] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,

Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. 2020. Karonte:

Detecting insecure multi-binary interactions in embedded firmware. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 1544–1561.

[32] Majid Salehi, Danny Hughes, and Bruno Crispo. 2020. 𝜇SBS: Static Binary

Sanitization of Bare-metal Embedded Devices for Fault Observability. In 23rd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020). 381–395.

[33] Ben Seri, Gregory Vishnepolsky, and Dor Zusman. 2019. Critical vulnerabilities

to remotely compromise VxWorks, the most popular RTOS. White paper, ARMIS,
URGENT/11 (2019).

[34] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.

In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.
[35] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In

NDSS, Vol. 16. 1–16.
[36] Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary

analysis. In 2017 IEEE Cybersecurity Development (SecDev). IEEE, 8–9.
[37] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2020. FirmXRay: Detecting

Bluetooth Link Layer Vulnerabilities From Bare-Metal Firmware. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
167–180.

[38] WindRiver. 2021. VxWorks: The Leading RTOS for the Intelligent Edge. https:

//www.windriver.com/products/vxworks. (2021).

[39] Michelle Y Wong and David Lie. 2016. Intellidroid: a targeted input generator for

the dynamic analysis of android malware. In NDSS, Vol. 16. 21–24.
[40] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.

2018. Eliminating Path Redundancy via Postconditioned Symbolic Execution.

IEEE Transactions on Software Engineering 44, 1 (2018), 25–43.

[41] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order

Matters: Semantic-aware neural networks for binary code similarity detection. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1145–1152.
[42] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang Wang, Qian

Tang, He Su, Chendong Yu, Jiahuan Xu, et al. 2019. B2SFinder: Detecting Open-

Source Software Reuse in COTS Software. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1038–1049.

[43] Yu Zhang,Wei Huo, Kunpeng Jian, Ji Shi, Haoliang Lu, Longquan Liu, ChenWang,

Dandan Sun, Chao Zhang, and Baoxu Liu. 2019. SrFuzzer: An automatic fuzzing

framework for physical soho router devices to discover multi-type vulnerabilities.

In Proceedings of the 35th Annual Computer Security Applications Conference.
544–556.

[44] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and

Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing of iot firmware

via augmented process emulation. In 28th USENIX Security Symposium (USENIX
Security 19). 1099–1114.

[45] Wenzhe Zhu, Zhou Yu, Jiashui Wang, and Ruikai Liu. 2019. Dive into VxWorks

Based IoT Device: Debug the Undebugable Device. In Black Hat Asia.

498

https://www.armis.com/
https://ecos.sourceware.org/
https://www.freertos.org/
https://www.freertos.org/
https://ghidra-sre.org/
http: //support.microsoft.com/kb/875352/EN-US/
http: //support.microsoft.com/kb/875352/EN-US/
https://mars.nasa.gov/mro/mission/spacecraft/parts/command/
https://mars.nasa.gov/mro/mission/spacecraft/parts/command/
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://www.windriver.com/products/vxworks
https://www.windriver.com/products/vxworks

	Abstract
	1 Introduction
	2 Problem and Approach Overview
	2.1 RTOS and Embedded Devices
	2.2 Motivation Example
	2.3 Necessity and Reasonability of SFuzz
	2.4 Challenges of Slice-based Fuzzing

	3 Design
	3.1 Forward Slicer
	3.2 Control Flow Nodes Handler
	3.3 Micro Fuzzing
	3.4 Concolic Analyzer

	4 Implementation
	5 Evaluation
	5.1 Real-world Vulnerabilities
	5.2 Comparison with Existing Methods
	5.3 Comparison with Symbolic Execution
	5.4 Accuracy and Efficiency

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

