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Abstract
IoT devices have brought invaluable convenience to our daily
life. However, their pervasiveness also amplifies the impact
of security vulnerabilities. Many popular vulnerabilities of
embedded systems reside in their vulnerable web services.
Unfortunately, existing vulnerability detection methods can-
not effectively nor efficiently analyze such web services: they
either introduce heavy execution overheads or have many
false positives and false negatives.

In this paper, we propose a novel static taint checking so-
lution, SaTC, to effectively detect security vulnerabilities in
web services provided by embedded devices. Our key insight
is that, string literals on web interfaces are commonly shared
between front-end files and back-end binaries to encode user
input. We thus extract such common keywords from the front-
end, and use them to locate reference points in the back-end,
which indicate the input entry. Then, we apply targeted data-
flow analysis to accurately detect dangerous uses of the un-
trusted user input. We implemented a prototype of SaTC and
evaluated it on 39 embedded system firmwares from six popu-
lar vendors. SaTC discovered 33 unknown bugs, of which 30
are confirmed by CVE/CNVD/PSV. Compared to the state-of-
the-art tool KARONTE, SaTC found significantly more bugs
on the test set. It shows that, SaTC is effective in discovering
bugs in embedded systems.

1 Introduction

IoT (Internet of Things) devices open the door to unprece-
dented connectivity and bring innovative approaches and ser-
vices to our daily life. It is believed that 5.8 billion IoT end-
points are in use in 2020 [44]. However, the pervasiveness
of IoT devices renders bugs more devastating and leads to a
significant security risk. According to the report [32], 57% of
IoT devices are vulnerable to medium or high severity attacks,
making these devices low-hanging fruit for attackers.

∗Co-leading authors.
†Corresponding author.

Among all IoT devices, wireless routers and web cameras
suffer more attacks than other embedded devices [32, 39, 41–
43]. The key reason is that these devices expose web ser-
vices and network services that usually contain exploitable
vulnerabilities. For example, a wireless router usually pro-
vides a web-based interface for end-users to configure the
system. The underlying firmware contains a web server, vari-
ous front-end files, and back-end binary programs. The web
server accepts HTTP requests from the front-end and sum-
mons back-end binaries to handle them. In this scenario, at-
tackers may construct malicious inputs to the front-end in
order to compromise corresponding back-end binaries.

Unfortunately, existing methods cannot effectively analyze
services in embedded systems to detect vulnerabilities. They
are blocked by complicated interactions and implicit data de-
pendencies between the front-end and the back-end. Dynamic
solutions, like fuzzing [8, 52] and emulation [7, 23, 50, 53],
provide concrete context to run the back-end. However, dy-
namic executions can only reach a small portion of all possible
program states, leading to a lot of false negatives. Static meth-
ods, like KARONTE [34], rely on the common inter-process
communication (IPC) paradigms between the front-end and
the back-end (e.g., environment variables) to locate input-
processing code, and perform centralized testing. Unfortu-
nately, these methods may result in many false positives as
they ignore the user-input context stored in the front-end files.

We observe that the key point of finding bugs from em-
bedded systems is to use the front-end of the web service to
locate the back-end code that handles the user-supplied data.

In this paper, we present SaTC (Shared-keyword aware
Taint Checking), a novel static analysis approach that tracks
the data flow of the user input between front-end and back-
end to precisely detect security vulnerabilities. Our insight
is that a back-end function handling the user-input usually
shares a similar keyword with the corresponding front-end
file: in the front-end, the user-input is labeled with a keyword
and encoded in the data package; in the back-end, the same or
similar keyword is used to extract the user-input from the data
package. Therefore, we can use the shared keyword to identify
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Figure 1: Motivating example. The left-hand side shows the front-end of the Tenda AC18 router: the USB management interface and the
source code of the web page; the right-hand side shows the back-end: the call graph of the message processing process. deviceName is used by
the code in the front-end and the back-end. An attacker can inject arbitrary command via sending a request with a malicious device name.

the connection between front-end and back-end, and locate
the entry of user-input in the back-end. With the user-input
entry, we can apply selective data-flow analysis to track the
untrusted input and identify its dangerous usage, like using it
as a command, which leads to command injection attacks.

To improve the speed of vulnerability detection in embed-
ded systems, we propose three optimizations to traditional
taint analysis techniques. First, based on the features of IoT
firmware, we develop a coarse-grained taint engine which
contains special rules for particular functions to balance the
efficiency and accuracy. Second, we speed up the path explo-
ration with the input guidance and the trace merging, which
leverages the call graph and sink functions to optimize the
searching space. Finally, to handle the infinite paths prob-
lem in specific functions (e.g., sanitizer function), we use a
prioritization algorithm to efficiently process loops.

We design SaTC with three components: an input-keyword
extractor to collect keywords from the front-end files, an in-
put entry recognizer to locate input entry in the back-end
binaries, and an input-sensitive taint engine to efficiently de-
tect vulnerabilities. Our prototype is implemented based on
Ghidra [31] and KARONTE [34] with around 9800 lines of
Python code. It supports parsing multiple types of front-end
files, including JavaScript, HTML, and XML files, and could
analyze back-end in widely used architectures, such as x86,
ARM, and MIPS.

To understand the efficacy of SaTC on detecting vulner-
abilities from embedded systems, we apply our tool on 39
firmware samples from six vendors. SaTC successfully dis-
covered 33 unknown vulnerabilities in these latest-version
firmware samples, including command injection vulnerabili-
ties and buffer overflow bugs. Among these bugs, 30 of them
have been assigned CVE/CNVD/PSV IDs due to their severe
security impact. We also compare SaTC with the state-of-

the-art bug detection tool, KARONTE. After testing seven
firmware samples for two days, SaTC raises 65 alerts which
contain 36 true positives, while KARONTE does not detect
any true positive. The results show that SaTC is a practical
tool to detect bugs in embedded systems.

In summary, we make the following contributions:
• We propose a novel technique that leverages the common

keywords between the front-end and back-end of embedded
systems to locate the data entry in the back-end binary.

• We design and implement SaTC that utilizes coarse-grained
taint analysis and trace merging method to efficiently detect
vulnerabilities in embedded systems.

• We evaluate SaTC on 39 real-world firmware samples and
discover 33 unknown bugs, including command injection,
buffer overflow, and incorrect access control bugs.
To foster future research, we will release the source code

of SaTC as well as the experiment data at https://gith
ub.com/NSSL-SJTU/SaTC.
Roadmap. §2 provides the motivation and background of
this work, and gives an overview of our system. §3, §4, §5
and §6 present the design and implementation of our data-
relationship recovering technique and the sensitive-data flow
analysis. We demonstrate the efficacy of SaTC through ex-
periments and case studies on real-world firmware samples
in §7. We discuss the application scenarios of SaTC and its
limitation in §8, and compare our system with related work
in §9. §10 concludes the paper.

2 Problem and Approach Overview

In this section, we first provide the background of vulnerabili-
ties in embedded systems. Then, we present the overview of
our approach and discuss the associated challenges.
Threat Model. In this paper we aim to detect security vulner-

https://github.com/NSSL-SJTU/SaTC
https://github.com/NSSL-SJTU/SaTC


1 int sub_426B8() {
2 Register_Handler("GetSambaCfg",formGetSambaConf);
3 Register_Handler("setUsbUnload",formsetUsbUnload);
4 Register_Handler("GetUsbCfg",formGetUsbCfg);
5 }
6

7 int formsetUsbUnload(uint32_t input) {
8 uint32_t v1 = input;
9 void *cmd = WebsGetVar(input,"deviceName",&unk_F213C);
10 doSystemCmd("netctrl %d?op=%d,string_info=%s",...,cmd);
11 sub_2C43C(v1,"HTTP/1.0 200 OK\r\n\r\n");
12 sub_2C43C(v1,"{\"errCode\":0}");
13 return sub_2C984(v1,200);
14 }

Listing 1: Back-end code of the motivating example. Function
sub_426B8 registers several handler functions, including function
formsetUsbUnload which processes USB unload action.

abilities from two types of IoT devices, i.e., wireless routers
and web cameras. These devices implement convenient web
services and network services to help the system manage-
ment, configuration and data sharing, like through protocols
MQTT (Message Queuing Telemetry Transport) and UPnP
(Universal Plug and Play). As these two types of devices are
usually the entries to the home network or local network [25],
attackers pay a lot of attention to them and like to hack them
through the network services [7, 8, 13]. For example, a re-
cent study [45] shows that 75% of IoT attacks in 2018 are
directed against routers, while web cameras are second at
15.2%. Meanwhile, most of these devices still have critical
flaws [32, 46]. We consider the attackers who have access to
a copy of the target device’s firmware, but are not physically
accessible to the victim device. They can only communi-
cate with the front-end interfaces to affect the values used
in the back-end. The back-end is protected with state-of-the-
art defense mechanisms on IoT devices, such as Executable
Space Protection [26], Address Space Layout Randomiza-
tion [33], and stack canaries [14]. However, due to the limited
resources, no advanced mechanisms (e.g., software defined
networking [3], intrusion detection system [1, 49]) are de-
ployed to dynamically recognize these attacks, i.e., command
injection and memory corruption attacks.

2.1 Motivating Example
The web services of an IoT device usually consist of two
components, the front-end and the back-end. The front-end
presents the configurations and functionalities of the device to
the end-users, while the back-end parses the requests received
from the front-end and executes related services. Figure 1
shows an example where the end-user utilizes the interac-
tive web interface to manage external devices of the Tenda
AC18 router. Currently, there is one USB drive called Gen-
eral USB Flash Disk mounted to the router and the user de-
cides to remove it. From the front-end web interface, she
just needs to click the Unmount button. The front-end will
automatically synthesize an unmount request with the device
name attached (line 4 in status_usb.js on the left-hand side),
and send the request to the back-end on the right-hand side.
The back-end web server will parse the request and invoke

function formsetUsbUnload to handle the request. Function
formsetUsbUnload identifies the device name, synthesizes a
command string (line 4 in httpd) and executes the command
to unmount the specified device (line 5 in httpd).

Unfortunately, the web service contains a typical command
injection vulnerability. As function formsetUsbUnload gener-
ates the unmount command without any sanitization check,
an attacker can append extra commands to deviceName and
thus run arbitrary commands on the router. For example, a
malicious deviceName 22;telnetd -l /bin/sh -p 3333 &

forces the back-end program to run two commands: 1)
netctrl ... 22 and 2) telnetd -l /bin/sh -p 3333 &,
where the second command launches a server to accept any
future commands. Furthermore, an attacker can directly send
the malicious unmount command to the back-end via the URL
http://IP:Port/goform/setUsbUnload?deviceName=evalCMD,
showing that the device can be compromised remotely.

Current bug-finding techniques cannot detect these vulner-
abilities effectively. Dynamic solutions, like fuzzing [8] and
emulation [7, 50, 53], cannot guarantee to cover all program
states and may miss many critical bugs. For example, to use
the recent work SRFuzzer [52] to identify this bug, we have to
insert a USB device into the router and trigger all the normal
interactions between the front-end and the back-end, includ-
ing Unmount. However, if we do not have much knowledge of
the router and forget to take these manual actions, the dynamic
methods will likely miss this highly exploitable bug. Static ap-
proaches such as KARONTE [34] focus on back-end binaries
and try to analyze all possible paths to find bugs. For exam-
ple, KARONTE takes common inter-process communication
(IPC) paradigms between the web server and the binaries as
the starting points for analysis. However, the large number of
IPC interfaces bring in a large number of excessive analyses
and thus lead to many false positives. We need to identify
the real entries of user-inputs in the back-end programs to
perform targeted, accurate analysis.

2.2 Observation
Without an oracle to highlight all real entries of user-inputs
in the back-end, how can we discover the vulnerability in the
motivating example? Our intuition is that the strings shown
in the web interface are commonly used in both front-end
files and back-end functions: in the front-end, the user-input
is labeled with a keyword and encoded in the data package; in
the back-end, the same or similar keyword is used to extract
the user-input from the data package. With these shared key-
words, we can connect the front-end and the back-end, and
identify the input-processing functions from the latter. Start-
ing from these functions, we can perform the static data-flow
analysis and effectively identify exploitable bugs.

Consider our motivating example in Figure 1, the front-
end JavaScript file status_usb.js contains two strings
goform/setUsbUnload and deviceName. Coincidentally, both
of them occur in the back-end binary httpd. Listing 1 pro-



Table 1: Intuition verification. F-Strs represents the strings se-
lected from front-end and used to encode user-input; B-allStrs rep-
resents all the printable strings in the back-end; Intersection repre-
sents the F-Strs strings that are used to retrieve data in the back-end;
Verified indicates the Intersection strings confirmed to label the
same data in the front-end and the back-end; % represents the pro-
portion of Verified in Intersection.

Vendor Device Series #F-Str #B-allStrs #Intersect Verified %

Tenda AC9 101 49,288 86 70 81.4
Tenda AC15 81 241,314 65 63 96.9
Tenda AC18 81 119,537 66 57 86.4
Tenda W20E 161 139,885 89 79 88.8
Netgear R7000P 114 467,706 59 59 100.0
Netgear XR300 135 517,254 76 72 94.7
Motorola M2 133 83,911 31 31 100.0
D-Link 867 85 84,764 53 50 94.3
D-Link 882 100 522,317 86 81 94.1
TOTOLink A950RG 69 53,931 31 27 87.1

Average - 106 227,990 64 59 92.4

vides more details of the back-end. goform/setUsbUnload
is split into two parts, while setUsbUnload is used to find
the input handler formsetUsbUnload. deviceName is used by
formsetUsbUnload to get the device name. With the help of
the common keywords setUsbUnload and deviceName, we
can recognize the user-input handler formsetUsbUnload (line
3) in the back-end and locate line 9 as the start point of pro-
cessing the input. Now, we can use the data-flow analysis
technique, like taint analysis [30, 35, 40], to track the usage
of untrusted input and detect unsafe usage. In this example,
we set cmd as the taint source and track its usage. At line 10,
we find cmd is used as the parameter of the security-critical
function doSystemCall with no constraints. This triggers an
alert to signal the potential vulnerability.

To verify that our intuition works on normal IoT devices,
we inspect 10 routers from five vendors to check whether the
front-end and back-end use common keywords to represent
the user input. Specifically, we extracted strings from the back-
end and front-end based on the following three principles. 1)
We select front-end strings that are used to encode user-input
in the network package sent to the back-end. Specifically,
the string is some “key” in the network package that has the
form of ...&key=value&.... We manually triggered as many
actions as possible in the front-end to cover more request
messages. 2) We select back-end strings that are used to re-
trieve input data from the messages. Based on our knowledge
of IoT firmware, we define several functions that are com-
monly used to obtain input value, such as websGetVar in the
motivation example. We collect constant-string arguments of
these functions as interesting back-end strings. 3) We take
an intersection of collect front-end and back-end strings. For
each string in the intersection, we mutate the associated data
in the front-end to trigger the request message sending to
the back-end, and check the value of the associated variables
in the back-end. If the back-end variable changes its value

accordingly, we confirm that the tested string is a shared key-
word to represent user input. We perform the mutation several
times to avoid accidentally-changed back-end variables.

Table 1 shows our verification result. On average, 92.4%
of the keyword-value pairs captured in the front-end match
the ones in the back-end, showing that our intuition works for
these common devices. For two devices, all front-end strings
match with the back-end ones, where we can completely rely
on the shared strings to identify the input data from the back-
end. However, for other devices, like Tenda AC9, the matched
strings only account for 81.4%, and we have to inspect the
other 18.6% to achieve a more accurate analysis.

2.3 Challenges and Our Approaches
Although our method seems straightforward for the motivat-
ing example, there are three challenges when we apply it to
real-world embedded systems.
C1: Identifying keywords in the front-end. User input is
usually labeled with a keyword hidden in the front-end, like
deviceName in the motivating sample. However, an unpacked
firmware contains thousands of strings in the front-end. For
example, the firmware of Netgear R7000P listed in Table 1
contains more than 600 front-end files and nearly ten thousand
strings. It is challenging to understand the semantics of each
string without domain knowledge or real executions.
C2: Locating the input handler in the back-end. The back-
end binaries contain many functions, where only a small part
of them handle the user input. Meanwhile, they also contain a
large number of strings and corresponding reference points.
As Table 1 shows, each device contains more than 40,000
strings in the back-end binaries. Therefore, it is challenging to
identify the entry point of user input in the back-end. Ideally,
the point should be strongly connected with the user input,
and its location should be close to the real usage of the input.
C3: Tracking the massive paths of user input to detect
vulnerabilities. To detect the vulnerability, we need to track
the data flow from the entrance of the input to all sinks, which
may contain massive paths. Unfortunately, the state-of-the-art
analysis tools [34, 38] introduce high overhead, and cannot
handle the elaborate control-flow graph or bypass the user-
input sanitization. We need an efficient method for data-flow
analysis and path exploration.

In this paper, we design SaTC to address the challenges
above to detect common vulnerabilities in embedded sys-
tems effectively. Figure 2 provides an overview of our sys-
tem, which takes as input a firmware sample (i.e., the entire
firmware image) and produces various bug reports. As the first
step, SaTC unpacks the firmware image using an off-the-shelf
firmware unpacker, like binwalk [21]. From the unpacked
image, it recognizes front-end files and back-end programs
based on the file types: HTML, JavaScript, and XML files
are usually front-end files, while executable binaries and li-
braries are back-end files. Then, SaTC analyzes the front-end
files and utilizes typical patterns to extract the potential key-
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Figure 2: Structure of SaTC. SaTC searches in the firmware front-
end to find input keywords and locates their references in the back-
end. Starting from reference points, SaTC uses input-sensitive taint
analysis to discover vulnerabilities in the back-end.

words of the user input. In Figure 1, deviceName, target and
goform/setUsbUnload will be identified as input keywords.

After that, SaTC recognizes the border binaries in the back-
end, which invokes different handling functions based on the
user-input keywords. From these functions, we try to locate
the points that retrieve the user input. To find the implicit
entry points related to the user-input, we further apply our
intuition to multiple back-end programs: user-input may be
delivered from one program to another via shared keywords.
This helps us track implicit data dependencies among binaries.
In Listing 1, the code at line 9 parses the user-input via the
input keyword deviceName, and thus SaTC treats it as one
entry point of user input. Finally, we use our input-sensitive
taint analysis to track the usage of the untrusted data. We
design several optimizations to make the traditional taint anal-
ysis efficient on embedded systems, including coarse-grained
taint propagation, input-guided path selection, and the trace
merging technique. When SaTC finds the user input is used
in any predefined sink, like as a parameter of a system call, it
collects the path constraints and judges the reachability. If the
sink is reachable while the input has weak constraints, SaTC
raises an alert of the potential vulnerability.

3 Input Keyword Extraction

Given an unpacked firmware, SaTC first extracts potential
keywords from the front-end files. We classify keywords into
two types based on their usage in the back-end: one type is
used to label user input, like the deviceName in Listing 1 and
we call them parameter keywords; another type is to label
the handler function, such as setUsbUnload in Listing 1, and
we call them action keywords. We identify input keywords
and their types based on the common patterns in different
front-end files. We also apply different fine-grained rules to
two types of keywords to filter out false positives.

In our current design, we consider three categories of front-

end resources: HTML files, XML files, and JavaScript files.
Since HTML files have a standard format, we use regular
expressions to extract the keywords, such as the values of
the id, name, and action attributes. The values of the action

attributes are treated as action keywords. The XML-based
services, such as Simple Object Access Protocol (SOAP) and
Universal Plug and Play protocol (UPnP), usually have a fixed
format in their XML files to label input data. Hence, we only
need to do a pre-analysis and then use regular expressions
to extract the keywords. The name of the first-level label
in the XML body is treated as an action keyword. The for-
mat of JavaScript is ever-changing, and thus the regular ex-
pression cannot correctly identify the keywords. Hence, we
parse a JavaScript file into an abstract syntax tree (AST) and
scan every Literal node to extract the value from value

attributes. If the Literal node contains the symbol /, we
take the string as the action keyword. We further search all
CallExpression nodes to find the ones that use typical ap-
plication programming interface (API) as their callee, such
as sendSOAPAction. The API methods or arguments of the
matched nodes are also treated as action keywords. With this
method, from the code in Figure 1 our extraction module will
get target, goform/setUsbUnload, and deviceName.

The strings collected from HTML, XML and AST contain
many fake keywords, which not only bring significant burden
to string matching in the next step, but also introduce false
positives in the bug detection. For example, string target is
commonly used in the front-end, but does not have the coun-
terpart in the back-end. To filter the invalid keywords, we de-
signed several rules based on our experience. First, we remove
strings with special characters, such as ! and @, which will
be escaped when the front-end generates the HTTP request.
Second, if a string ends with =, we retain the left-hand part and
discard the right-hand side. Symbol = is usually facilitated to
concatenate parameters and variables, such as deviceName=
in Figure 1, where only the parameter name will be reused
in the back-end. Third, we filter out strings shorter than a
threshold (we use 5 in our work) as the parameter keyword
and action keyword usually have non-trivial names.

After filtering, the candidate list may still contain many
distractors that are not used as input keywords. To reduce the
complexity of the subsequent modules, we use two heuris-
tics to identify and exclude them from the keyword set. If a
JavaScript file is referenced by a lot of HTML files, we treat it
as a common, shared library, like a charting library. As library
files usually do not contain input keywords, we will ignore
all candidates from such files. If a keyword is referenced by
several front-end files, such as Button and Cancel, it may be a
common string rather than an input keyword. We also remove
such keywords from the candidate list.
Border Binary Recognition. In the firmware back-end, a
border binary exports the device functionalities to the front-
end, and meanwhile accepts the user input from the front-
end [34]. Therefore, the border binary is a good starting point



1 SetWebFilterSettings() {//in binary prog.cgi
2 pcVar1=webGetVarString(wp,"/SetWebFilterSettings/

WebFilterMethod");
3 iVar2=webGetCount(wp,"/SetWebFilterSettings/WebFilterURLs/

string#");
4 i = 0;
5 if (iVar2 <=i) {
6 /* NVRAM operations */
7 nvram_safe_set("url_filter_mode",pcVar1);
8 nvram_safe_set("url_filter_rule",tmpBuf);
9 }
10 }
11 upload_url_filter_rules() {//in binary rc
12 /* NVRAM operations */
13 iVar1=nvram_get_int("url_filter_max_num");
14 __s1=(char *)nvram_safe_get("url_filter_mode");
15 __src=(char *)nvram_safe_get("url_filter_rule");
16 }

Listing 2: Pseudocode of NVRAM Operations. Function call at
line 2 is the input entry, which uses a superset of the keyword
WebFilterMethod to retrieve the input.

for our analysis. Based on the input keywords, SaTC can
recognize the border binaries in a short time. Specifically, we
extract strings from each back-end binary and try to match
them with the input candidate keywords. We treat the binary
with the maximum matched keywords as the border binary.

4 Input Entry Recognition

After receiving a request from the front-end, the web server
invokes the corresponding handling function to parse the input
data. The data-extracting point is the target of the subsequent
analysis, and we define it as the input entry. The input-entry
recognition module detects the entry points in the back-end
binaries based on the references to front-end keywords.

s(ki) =

{
ki
concat(ki,str)

, ki ∈ keywords,str is any string

L : ret = f oo(ski , ...), ki ∈ parameter_keywords
P : ret = bar(ski , ...,& f oo), ki ∈ action_keywords

(1)

Keyword Reference Locator. Equation 1 shows our method
to locate input entries from the border binaries in the back-
end. ski represents a string that either exactly equals to one
input keyword ki, or contains a substring that is ki. The locator
detects the location inside the border binaries that references
to the string ski . As the handling functions usually use the in-
put keywords to extract the target data from the request, SaTC
locates function calls L that take the input keywords as param-
eters, like foo(“devName”). Consider our motivating example
in Figure 1, the input-keyword extractor identifies the string
deviceName as a parameter keyword, and recognizes httpd as
the border binary. While searching the keyword references in
httpd, as Listing 1 shows, our locator finds the function call
to websGetVar uses deviceName as a parameter (line 9). This
function call is treated as a keyword reference location, and
thus an input entry. In another example in Listing 2, at line
2 the function call to webGetVarString uses the concatena-
tion of string SetWebFilterSettings and parameter keyword
WebFilterMethod as its argument. Therefore, this function

call is also an input entry.
Among all keyword references, we prioritize the ones in-

side the action handlers. Specifically, SaTC searches the func-
tion calls P that takes the action keywords and function point-
ers as arguments. As the action keywords are used to retrieve
handlers for particular inputs, we treat the routines speci-
fied in the function pointer as the action handler. If some
reference points L of parameter keywords are inside these
handler functions, we will prioritize exploring L before oth-
ers. In Listing 1, SaTC locates function formsetUsbUnload

as the action handler, since the function call at line 3 takes
the action keywords setUsbUnload and formsetUsbUnload

as the arguments. Therefore, as a reference point, line 9 in
formsetUsbUnload will be analyzed before other entries.

Lp : ret = f oo(pi, ...), pi /∈ keywords, ∃L : dist(Lp,L)< MAX (2)

Implicit Entry Finder. During our experiment, we find sev-
eral real input entries in the back-end do not have correspond-
ing keywords in the front-end. For example, in Listing 3, func-
tion formSetSambaConf retrieves several elements from the
data package, and each string should be treated as a valid in-
put entry, like password. However, our input-keyword extrac-
tion module finds all keywords except action and usbName.
Without action in data, line 4 will return a null pointer, and
the condition in line 9 will always be false. Therefore, in the
normal execution, the code injection vulnerability in line 10
will never be triggered. SaTC will also miss this vulnerabil-
ity. However, attackers can directly send arbitrary requests
without the help of the front-end. Therefore, they can provide
a malicious request that contains both action and usbName,
and launch the code injection attack.

To mitigate this problem, we propose to take similar code
patterns around known input entries into consideration for
analysis. Equation 2 shows our idea: if we have identified
an input entry L, another function call f oo around L will
be considered as another input entry as long as f oo has the
similar code pattern as L. We call the missing keyword pi here
as an implicit keyword. This method will help SaTC detect
some missing entries and thus mitigates false negatives in the
bug detection. In Listing 3, both action and usbName will be
treated as implicit keywords. Once SaTC performs data-flow
analysis for them, it will identify the code injection bug easily.
Cross-Process Entry Finder. During the data-flow analysis,
we find that some data-flow of input could be interrupted at
the process boundary. For example, in Listing 2 the input
pcVar1 is saved into the non-volatile random-access mem-
ory (NVRAM) in one process prog.cgi (line 7), and then is
retrieved in another process rc from NVRAM (line 14). Fortu-
nately, we can apply our original insight again to connect data-
flows across different processes: the data-saving location and
the data-retrieving location usually share the same keyword.
In Listing 2, both prog.cgi and rc take url_filter_mode to
share pcVar1, and use url_filter_rule to deliver tmpBuf.



1 int formSetSambaConf(uint32 user_input) {
2 void *data=user_input;
3 void *usbname;
4 action=Extract(data,"action",&unk_F213C);
5 passwd=Extract(data,"password","admin");
6 premit=Extract(data,"premitEn","0");
7 intport=Extract(data,"internetPort","21");
8 usbname=Extract(data,"usbName",&unk_F213C);
9 if (!strcmp(action,"del")) {
10 doSystemCmd("cfm post netctrl %d?op=%d,string_info=%s"

,51,3,usbname);
11 }
12 }

Listing 3: Pseudocode of implicit keyword sample. Both action

and usbName are missing in the front-end files. SaTC will identify
them as implicit keywords and thus can detect the bug inline 10.

Based on the shared keyword we can connect different bina-
ries or functions that set or use the same user input. Compared
with the original input reference point (line 2), the second re-
trieval of the user input at line 14 is much closer to the real
sink function (skipped in the list). Starting taint-track from
this point will significantly save the analysis effort.

SaTC uses the cross-process entry finder (or CPEF) to
track the user input across firmware binaries or components.
Specifically, it searches various inter-process communication
paradigms that use shared strings to label the data, and estab-
lishes the data-flow from a set point to a use point. CPEF pro-
vides the necessary logic to detect communication paradigms
(e.g., NVRAM communication) for sharing data between bina-
ries or functions. It mainly supports two types of inter-process
communication paradigms:

• NVRAM. NVRAM is a type of RAM that retains data
after the host device is power off. It usually keeps the
devices’ user configurations. The CPEF identifies all
nvram_safe_set and nvram_safe_get functions in order
to build cross-process data-flows. In the example of List-
ing 2, the data dependency between prog.cgi and rc is
built through NVRAM operations.

• Environment variables. Processes can share data via envi-
ronment variables, where the keyword is the variable name.
CPEF walks the program path, and collects all function
calls that set or get environment variables (e.g., setenv or
getenv). It establishes a data-flow between an environment
setter and a getter if they share the same variable name.

5 Input Sensitive Taint Analysis

SaTC leverages path exploration and taint analysis technology
to track input data to detect dangerous use in the back-end.
As Table 2 shows, we design three optimizations based on the
unique features of the firmware to balance the efficiency and
accuracy, and to speed up the path exploration.

5.1 Coarse-Grained Taint Engine
To perform lightweight data-flow analysis on the user input,
we build the taint engine with three principles: (i) the taint

Table 2: Optimizations for efficient taint analysis. We embed
three techniques to traditional taint analysis techniques to make it
efficient and accurate to analyze embedded devices.

Challenge Optimization Method Section

Balance the efficacy and accuracy Coarse-grained taint §5.1
1 Sensitive-trace guidanceSpeed up the path exploration 2 Trace merging §5.2

Handle infinite loop Path prioritization §5.3

Algorithm 1 Taint Specifications
1: function TAINT_SPECIFICATION(Ins, Taint_Map)
2: if IS_FUNCALL(Ins) then
3: func← GETFUNCADDR(Ins)
4: (retv, params)← GETPARAMS(Ins)
5: taint_set← HAS_TAINT(params)
6: if taint_set == NULL then return
7: end if
8: if HAS_SUMMARY(func) then TAINT_RULE(func, Taint_Map)
9: else if IS_NESTFUNC(func) then

10: if IS_POINTER(retv) && IS_USED(retv) then
11: T(retv)
12: else
13: T(params)
14: end if
15: else
16: STEPINTO(func, Taint_Map, taint_set)
17: end if
18: else
19: TAINT_RULE(Ins, Taint_Map)
20: end if
21: end function

source should be related to user input; (ii) it should balance
the accuracy and efficiency of the analysis; (iii) it only tracks
the data flow from the source to the potential sink.
Taint Source. The taint engine marks taint sources based
on the results of the input entry recognition. A taint source
can be a variable or a parameter of a target function. As
Listing 1 shows, string deviceName is used as the parameter
of the function WebsGetVar, and thus its memory location will
be set as the taint source. Since the starting point of SaTC’s
analysis is a code fragment of a binary, it is usually hard to
identify the variable or structure that stores the user-supplied
data. However, with our taint source based on input keywords,
SaTC could obtain the data flow of the user input data easily.
Taint Specification. SaTC’s taint engine propagates taint
attributes in the instruction level. We implemented it based on
the multi-architecture binary analysis framework angr [38].
The main factor that affects the efficiency and accuracy of taint
analysis is the taint specification for function call. To handle
the function call appropriately, we first divided the functions
into the following categories: summarizable function, general
function, and nested function. The summarizable functions
are standard library functions related to operations on memory
regions, such as strcpy and memcpy. We can easily summarize
the effect of these functions. The general functions contain no
function call instructions in its body or only contain branches
to summarizable functions (e.g., funcA in Figure 3). The rest
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Figure 3: Taint specification for different types of functions. The
left-hand side shows an example program, while the right-hand side
shows the application of taint propagation rules. T(A) indicates the
taint tag of A.

of the functions, which contain function call instructions to
general functions, are nested functions. In the code of Figure 3,
function strcpy and strlen are treated as summarizable func-
tions. funcA does not call non-summarizable functions, and
thus it is a general function. funcB calls to another general
function funcC and thus is a nested function.

We designed Algorithm 1 to handle a variety of function
calls and instructions. If an instruction Ins is not a function
call, the taint engine will handle it with the corresponding
taint rule (line 19) and update taint map Taint_Map. For the
data movement instruction, the taint engine will propagate
the taint attribute from the source operand to the destination
operand. For an instruction Ins that calls function func, if one
actual parameter param contains the taint attribute (line 5), the
taint engine will track func’s effect on the taint map. If func is
a summarizable function, SaTC treats it as an instruction and
applies its taint rule (line 8) that is built based on its semantic.
If func is a general function, the taint engine will step into
its function body and track the data flow from the entry point
to the end (line 16). For nested functions, if the taint engine
steps into its function body and tracks the data flow for more
nested functions, the analysis will be too time-consuming.
Hence, we directly propagate the attribute of the argument to
its calculation results to balance efficiency and accuracy (line
9∼14). Specifically, if the function returns its results in the
return value retv, we will label with retv with attributes of
all arguments; otherwise, we propagate the taint attributes to
all pointer arguments.

Guiding Function Set
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Call Tree
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Start

SinkX

SinkY

FuncC

FuncB FuncA
FuncB

FuncC

SinkXSinkY

Figure 4: Call tree of an input entry.

5.2 Efficient Path Exploration
SaTC focuses on detecting two classes of vulnerabilities:
memory-corruption bugs (e.g., buffer overflows) and com-
mand injection. To detect the former class, we first find
memcpy-like functions within a binary and treat them as sink
functions. memcpy-like function means a function that is se-
mantically equivalent to memcpy, like strcpy. Then, if attacker-
controlled data unsafely reaches a memcpy-like function, like
without being sanitized, we raise an alert. For example, for a
memcpy function, if the attacker-controlled data could affect
the value of the source buffer’s length, SaTC will raise an
alert. To detect the latter class of vulnerabilities, we retrieve
the conditions that guard the sink functions (e.g., system-like
function). Then, we check whether the attacker can construct
a proof of concept (PoC) to bypass the constraints. If so, we
raise an alert.
Sensitive Trace Guiding. Although previous modules re-
duce the targets of taint analysis, there could be still a consid-
erable number of input entries that need to be analyzed. To
promote the analysis efficiency, SaTC searches the sink call
traces for each target before exploring any path. A sink call
trace represents a function call sequence in the call graph from
the input entry to a potential sink function. SaTC searches the
sink call traces of a function based on its call tree, which takes
the function as the root node. If one function does not contain
a call trace, there is no reachable path from this function to
the sink point. SaTC will delete all input entries inside this
function from the target set. During the exploration, SaTC
checks each function call instruction to see whether the target
belongs to the call trace. If so, we direct the exploration into
the function body.
Call Trace Merging. Starting from one input entry there
could be massive call traces, where many call traces share
some common paths. To reduce the analysis effort, SaTC
merges the call traces with the same input entry as much
as possible. To be specific, as Figure 4 shows, we first clus-
ter all traces based on their start points and input keywords.
Secondly, we divide all functions in the call traces into two
categories: sink functions and guiding functions, and record
the types and addresses of the function call instructions. The
guiding function represents the dominator of a sink function
in a sink call trace. During the exploration, after we encounter
a call instruction that jumps to a guiding function, SaTC will
step into the function for fine-grained analysis. Otherwise, it



Algorithm 2 Sanitizer Constraints Collection
1: function SANITIZER_CONS_COLLECTION(totalNodes, Max, N, rootNode)
2: Tree← /0

3: visitedNodes← /0

4: basicNodes← totalNodes
5: times← 0
6: if !HASSUCCESSOR(rootNode) then return /0;
7: end if
8: while visitedNodes != basicNodes and times < Max do
9: Tree, visitedNodes← RANDOM_WALK_SEARCH(rootNode, Tree, visit-

edNodes, basicNodes)
10: times++;
11: end while
12: for leafNode in Tree.leafNodes do
13: if num← GET_FORWARD_NUM(leafNode) > N then
14: Tree← REMOVE(basicNodes, leafNode)
15: end if
16: end for
17: Cons← GET_PATH_CONSTRAINTS(Tree)
18: return Cons
19: end function

applies the taint specification and strategy (defined in Algo-
rithm 1) to the instruction.

5.3 Path Prioritization Strategy
During our evaluation, we find that some particular functions
have a significant impact on the accuracy and efficiency of
the path exploration. For example, sanitizer function could
result in infinite loops, while parser functions may introduce
under-taint problem [34]. To mitigate the negative impact of
these particular functions, we identify them and apply special
rules. Specifically, if 1) a function contains at least a loop; 2)
the number of the function’s compare instructions is greater
than the threshold; 3) parts of the compare instructions could
restrict the content (i.e.,value) of the memory region pointed
by the function’s arguments, we will treat it as memcmp-like
function. Based on the amount of information preservation,
we can divide these functions into two categories: parsers and
sanitizers.

Parsers. A parser function usually contains a loop, such
as funcA in Figure 3. If the variable s1 is unconstrained,
there will always be a path from the default statement to the
head of the for loop. Among these paths, only those passing
through the first case statement (line 5) would propagate the
taint outside the function. In other words, an analysis missing
these paths would mistakenly establish that the user input
cannot affect variable s2 and later execution paths. SaTC uses
the same solution with KARONTE to handle this problem,
which valorizes those paths within a function that potentially
propagate the taint also outside the function.

Sanitizers. A sanitizer function either cleans malicious data
or warns about the potential threat. Consider the sample in Fig-
ure 5, to filter the specific strings, such as ?, Netgear inserts a
sanitizer function FUN_7b83c before the system-like function.
It contains a complex check on the user_input (line 7). The
while loop and comparing operations result in many paths.
However, to get the complete constraints on the user_input,
we are only interested in the longest path.

leafNode

Figure 5: Pseudocode of sanitizer function. This function tries to
remove invalid characters from the user input before the program
invokes a system-like function.

We use Algorithm 2 to explore the longest path and get the
constraints. The rootNode is the start basic block of the func-
tion. Firstly, it uses Random_Walk_Search function to explore
the reachable paths and basic blocks visitedNodes in lim-
ited total times Max (line 8). Random_Walk_Search randomly
chooses a successor from the rootNode and recursively calls
itself until encountering a leafNode and records the leafNode

(line 9). The leafNode represents the basic block that has no
successor or the source basic block of the back edge of a loop.
Secondly, it scans all leafNodes and removes a leafNode if
the number of its in-degree is more than the threshold value N

(line 13). Finally, it re-explores the function and outputs the
constraints of the longest path (line 17). As Figure 5 shows,
the else branch of the complex check is a leafNode.

6 Implementation

We implemented the prototype system with around 9800 lines
of Python code. The input keyword extraction module is im-
plemented based on standard XML processing library and
JavaScript parsing library Js2Py [16]. The input entry recog-
nition module is implemented based on Ghidra library and
extended KARONTE’s CPF which covers shared tainted vari-
able with NVRAM [10]. The taint engine of the input sensitive
analysis is built on top of angr [38], a multi-architecture binary
analysis framework. The path selection part is implemented
based on Ghidra library [31]. To make SaTC more available
for MIPS architecture, we fix the binary loader of angr and the
register misuse problem of KARONTE. Now, the prototype
system supports multiple architectures, including x86, ARM
and MIPS.



Table 3: Dataset of device samples. We selected 39 device samples
from six vendors, including 37 routers and two cameras on two
architectures. SaTC found 33 previously unknown bugs, and 30
have been confirmed by developers. SizeP and SizeUP represent the
average size before and after unpacking, respectively.

Vendor Type Series # SizeP SizeUP Arch Bugs

Netgear Router R/XR/WNR 19 38M 192M ARM32 (LE) 5
Tenda Router AC/G/W 9 12M 105M ARM32 (LE) 10
TOTOLink Router A/T 2 5M 60M ARM32 (LE) 3
D-Link Router DIR/DSR 5 8M 123M MIPS32 (LE) 12
Motorola Router C1/M2 2 12M 64M MIPS32 (LE) 3
Axis Camera P/Q 2 60M 700M ARM32 (LE) 0

Total 2 14 39 135M 1,244M 2 33

7 Evaluation

We evaluate SaTC on real-world embedded systems to answer
the following research questions:
• Q1: Can SaTC find real-world vulnerabilities? How effec-

tive is it compared to the state-of-the-art tool? (§7.1)
• Q2: Can SaTC accurately detect the input keywords? (§7.2)
• Q3: How efficient and accurate is our taint analysis? (§7.3)

Dataset. To evaluate our approach, we selected six major
IoT vendors that have provided their device firmware online,
specifically, Netgear, D-Link, Tenda, TOTOLink, Motorola
and Axis. As shown in Table 3, we eventually collected 39
firmware samples from 14 series, including 37 routers and 2
cameras. Among the samples, 32 adopt the ARM32 architec-
ture, while another seven use the MIPS32 architecture. On
average, each firmware is 26 megabytes and totally SaTC has
processed 1,024 megabytes.
Existing Tool. We compared our tool with KARONTE [34],
the state-of-the-art static bug-hunter for embedded systems.
It monitors the interactions between multiple binaries in the
firmware back-end, and utilizes taint analysis to track data-
flow between binaries to detect vulnerabilities.
Bug Confirmation. Each alert produced by SaTC contains
the call trace from the start point to the sink function, and the
corresponding input keywords. We distinguish true positives
from false positives according to whether the path is reachable
in the back-end. If we can manually generate the proof-of-
crash (PoC) based on the alert and verify it on the physical
device, we consider the true positive as a real bug.

7.1 Real-world Vulnerabilities
As shown in Table 4, SaTC detected 33 previously unknown
bugs, and at the time of paper writing, 30 of them have been
confirmed by their developers. 25 bugs are command injec-
tion vulnerabilities; two of them are buffer overflow bugs;
the other six belong to incorrect access control which could
result in privacy disclosure. As we define more sinks related
to system-like functions, our tool found more command in-
jection vulnerabilities than other types. 30 bugs have assigned
CVE/CNVD/PSV numbers due to their severe security conse-

Table 4: Vulnerabilities discovered by SaTC. For the bug type,
BoF means buffer overflow; CI represents command injection; IAC
indicates incorrect access control. Ksrc represents the type of the
front-end file where the vulnerability-related keyword is found. Ser-
vice represents the service where the vulnerability occurs.

Vendor Device Series Type Bug IDs Ksrc Service
PSV-2020-0267 HTML HTTPR7000/R7000P BoF CVE-2020-28373 XML UPnP
CNVD-2020-15102 HTML+ HTTPR6400v2 CI CNVD-2020-28091 HTML+ HTTP

Netgear

XR300 CI PSV-2020-0277 HTML HTTP
CNVD-2019-22866 JS HTTP
CNVD-2019-22867 JS HTTPCI
CNVD-2019-22869 HTML HTTPW20E

IAC 1 unassigned JS HTTP
CNVD-2020-46058 JS HTTPG1/G3 CI CNVD-2020-46059 JS HTTP
CNVD-2020-29725 JS HTTP
CNVD-2020-40766 JS HTTP
CNVD-2020-40767 JS HTTP

Tenda

AC15/AC18 CI

CNVD-2020-40768 JS HTTP
T10 CI CNVD-2020-28089 JS HTTP

CNVD-2020-28090 JS HTTPTOTOLink A950RG CI 1 unassigned JS HTTP
CVE-2019-7388 JS HTTP
CVE-2019-7389 JS HTTP
CVE-2019-7390 JS HTTPDIR 823G IAC

CVE-2019-8392 JS HTTP
CVE-2019-8312 XML HNAP
CVE-2019-8314 XML HNAP
CVE-2019-8316 XML HNAP
CVE-2019-8317 XML HNAP
CVE-2019-8318 XML HNAP

DIR 878 CI

CVE-2019-8316 XML HNAP
IAC 1 unassigned JS HTTP

D-Link

DIR 878 882 CI CNVD-2020-23845 XML HNAP
CVE-2019-9117 JS HTTP
CVE-2019-9118 JS HTTPMotorola C1 M2 CI
CVE-2019-9119 JS HTTP

Total 3 33 3 3

quence, while developers are still actively inspecting another
one. The last column shows the services where SaTC detects
vulnerabilities. Other than the common HTTP protocol, SaTC
also supports other services such as UPnP and HNAP. These
results show that SaTC can effectively find common vulnera-
bilities in various network services of embedded systems.
Comparison with KARONTE. We compared SaTC with
the state-of-the-art static analysis tool KARONTE on discov-
ering vulnerabilities.

We use the dataset1 and experiment result released by
KARONTE, which includes four major IoT vendors (i.e., Net-
gear, TP-link, D-Link, and Tenda) and totally 49 firmware
samples. Table 5 shows our evaluation results. SaTC
raised 2,084 alerts and out of them, 683 are true positives;
KARONTE produced 74 alerts, among which 46 were true
positives. The result shows that SaTC can find more true pos-
itives than KARONTE. On the design level, SaTC takes a
similar method as KARONTE, which both rely on common
strings to connect different components of the IoT devices:
KARONTE uses common strings between multiple back-end
binaries to connect data flow, while SaTC identifies common

1 https://github.com/ucsb-seclab/karonte#dataset

https://github.com/ucsb-seclab/karonte#dataset


Table 5: Compared with KARONTE on its dataset. For each
vendor we report the device series, the number of firmware samples,
the average analysis time (hour), the total number of alerts (#Alert)
and the total number of true positives (#TP).

KARONTE SaTCVendor Device Series #Samples #Alerts #TP Time #Alerts #TP Time

Netgear R/XR/WNR 17 36 23 17:13 h 1,901 537 16:47 h
D-Link DIR/DWR/DCS 9 24 15 14:09 h 32 22 1:57 h
TP-Link TD/WA/WR/TX/KC 16 2 2 1:30 h 7 2 4:13 h
Tenda AC/WH/FH 7 12 6 1:01 h 144 122 12:19 h

Total - 49 74 46 33:57 h 2,084 683 35:16 h

Table 6: Compared with KARONTE. We list the analysis time
(min), the number of alerts (#Alert) and true positives (#TP).

Compare AC15 AC18 W20E 878 R6400 R7000 XR300

SaTC
#Alert 10 10 4 22 4 5 10
#TP 4 4 2 16 4 2 4
Time 573 576 55 502 1,823 694 1,377

KARONTE
# Alert 17 17 0 0 0 0 0
# TP 0 0 0 0 0 0 0
Time 222 210 153 214 2,880 2,880 2,880

identifiers between the front-end and the back-end to locate
entries of user input. However, the difference in the final re-
sult is significant. As SaTC can analyze front-end files to
reveal input entries in the back-end, we can significantly find
more analysis points for taint analysis and thus improve the
bug-detection capacity. In contrast, common strings identified
by KARONTE in back-end binaries cannot guarantee to be
related to the user input. Therefore, KARONTE suffers from
inefficient analysis and misses a lot of bugs.

We further selected seven new firmware samples from
three vendors, specifically, Tenda, D-Link, and Netgear, to
confirm the advantage of SaTC on more IoT devices. We
ran KARONTE and SaTC until it completes the analysis or
time out (2 days), and set SaTC to only detect command in-
jection vulnerability. The result is given in Table 6. SaTC
successfully found 36 true positives, while KARONTE could
not find any true positive in any samples. For AC15 and
AC18, KARONTE provided 17 paths to the sink addresses.
We manually verified that all the warnings are false posi-
tives. For W20E, KARONTE found no potential vulnerability.
KARONTE did not find any border binary in D-Link DIR
878 and thus could not raise any alert. For R6400, R7000
and XR300, KARONTE could not finish analysis within 48
hours. We found it hangs while analyzing a basic block and
thus found no vulnerability. These results indicate that SaTC
outperforms KARONTE on discovering vulnerabilities in
embedded systems.

We further manually checked the alerts that are only found
by our tool (in Table 5) and identified the underlying reasons
that KARONTE missed them. Firstly, SaTC and KARONTE
adopt different features to identify border binaries. Specifi-
cally, KARONTE uses the features of instructions and func-
tions to identify border binaries, while SaTC considers the

string extracted from the front-end files instead. These differ-
ent heuristics cause KARONTE and SaTC to select different
border binaries. For example, in Tenda AC series, SaTC se-
lects httpd as the border binary while KARONTE selects
app_data_center. SaTC raises 144 alerts, which are missed
by KARONTE. Secondly, SaTC and KARONTE identify dif-
ferent entry points. KARONTE focuses on the shared data
between binaries, while SaTC focuses on the entry points of
the user input. For example, SaTC finds the keyword ed_url

in the border binary httpd of Netgear R6400 that labels the
user input, which cannot be found by KARONTE and re-
sults in a false negative. As another example, for the keyword
http_user in Netgear R7900, both KARONTE and SaTC
could find the same buffer-overflow bug (i.e., the traces in
the reports of SaTC and KARONTE are the same). How-
ever, SaTC could find one more buffer-overflow bug because
KARONTE misses an entry point related to the string. Finally,
KARONTE cannot detect any command injection vulnerabil-
ities as it does not track the data flow from the input entry
points to the system-like functions. For example, KARONTE
misses 12 command injection alerts in Netgear R7300.

In terms of the analysis time, KARONTE and SaTC have
their own pros and cons. The analysis time of SaTC depends
on the protocols the device uses and the number of sensitive
input entry points it extracted. For example, SaTC found more
than 31,000 back-end entry points in 17 Netgear samples and
found only 779 entry points in nine D-Link samples, and
therefore, the average analysis time for the Netgear samples is
14 hours longer than the D-Link samples (shown in Table 5).
In contrast, the time spent of KARONTE depends on the num-
ber of data keys found in the border binaries, which are used
to label the IPC (inter-process communication) paradigms.
For example, SaTC found 10,228 sensitive entry points in 7
Tenda samples, but KARONTE found less than 100 data keys.
Hence, KARONTE is faster than SaTC on Tenda samples.
Case Study: Command Injection. Listing 4 shows a com-
mand injection vulnerability in D-Link DIR 878, detected
by SaTC. The front-end HTML file Network.html contains
an input keyword SetNetworkSettings/IPAddress (line 4).
Our input entry module detects a reference of the keyword in
the border binary prog.cgi (line 10). The cross-process entry
finder recovers the data dependency between prog.cgi and rc

base on the shared string SysLogRemote_IPAddress and finds
the entrance of the code fragment that uses the input data in
function FUN_44fa0c (line 17). The input-sensitive taint anal-
ysis module finds a call trace to the sink function twsystem at
line 28 and raises an alert based on the path exploration result
and path constraints (line 25).
Case Study: Incorrect Access Control. We discover incor-
rect access control vulnerability of a device based on the
action keywords identified by SaTC. First, we send requests
with action keywords to trigger the corresponding handler
functions in the back-end of device. Then, we check the re-
sponses and verify whether an API of the device is correctly



1 /* Keywords: SetNetworkSettings/IPAddress
2 front-end: /cpio-root/.../www/web/Network.html */
3 function SetResult_3rd(e){ ...
4 e.Set("SetNetworkSettings/IPAddress",
5 document.getElementById("lanIP").value)...
6 }
7 /* Keywords Reference Point: FUN_43a08c
8 back-end: /cpio-root/bin/prog.cgi */
9 void FUN_43a08c(uint32 p) {
10 s=webGetVarString(p,"/SetNetworkSettings/IPAddress");
11 ModifySyslogServerIpNetAddr(s,s_00,&lac,&l9c);
12 }
13 void ModifySyslogServerIpNetAddr (uint32 param_1, ...) {
14 snprintf(acStack72 ,0x10,"%s",param_1);
15 iVar2 = ModifyIpNetAddr(&local_58 ,0x10,acStack72);
16 if (iVar2 == 0)
17 nvram_safe_set("SysLogRemote_IPAddress",&local_58);
18 }
19 /* Sink point : /cpio-root/bin/rc */
20 void FUN_44fa0c(void) {
21 /* Located by Cross-Process Entry Finder */
22 pcVar1 = nvram_safe_get("SysLogRemote_IPAddress");
23 iVar2 = strcmp(__s1,"1");
24 if (iVar2 == 0) {
25 if (*pcVar1 != '\0') {
26 memset(acStack112 ,0,100);
27 sprintf(acStack112 ,"syslogd -L -R %s",pcVar1);
28 twsystem(acStack112 ,1);
29 }}}

Listing 4: Pseudocode of CVE-2019-8312, a command injection
vulnerability detected by SaTC at line 28.

restricted for access. In our data set, we found six incorrect
access control vulnerabilities that could result in privacy dis-
closure. For example, in CVE-2019-7388, D-Link 823G incor-
rectly restricts access to a resource from an unauthorized actor.
An attacker only needs to call an HNAP API GetClientInfo
remotely and could get the information of all clients in the
wireless local network (WLAN), such as IP address, MAC
address and device name.

7.2 Accuracy of Keyword Extraction
The Ksrc column of Table 4 shows the type of front-end file
where the vulnerability-related keyword is found. 20 out of 33
bugs are related to input keywords found in JavaScript files;
eight are related to keywords in XML files; four of them rely
on the keywords in HTML files. Among 33 bugs, only two
are related to the keywords in the form component of HTML
files (labeled as HTML+ in Table 4). For the bug in XR300,
we use the implicit finder to identify the entry that is closer
to another normally located entry. The result means all three
types of front-end files used in the input keyword extraction
(§3) are necessary to locate the input entries. Table 8 shows
the number of input keywords selected by each step of SaTC
during the evaluation. Only 10% of all strings from front-end
files are finally used as input keywords.

False Positive of Parameter Keywords. To understand the
false positives of the input keyword extraction (§3), we extend
the input entry locators in §4 to find all data-retrieval func-
tions. These functions are commonly used to obtain input data
from the request package with the parameter keywords, such
as the function WebsGetVar. We treat parameter keywords
used by these functions as true positives. For other parameter
keywords, we apply manual analysis: if they are used to label

Table 7: Categories of the false positives of the keywords. In this
table, we list the type (Type) and the sample case (Sample).

Type Sample

Value of id label (HTML) id="adv_connect_time"
Constant string (JavaScript) if (typeof(event.pageX) == "undefined")
Function’s parameter (JavaScript) R.module("macFilter", view, module)

some user-input from some related requests, we treat them as
true positives; otherwise, they are false positives.

As shown in the vPar/tPar column of Table 8, SaTC collects
sustainable true positives in parameter keywords, especially
for TOTOLink (80%), Tenda samples (69%) and Netgear sam-
ples (32%). For devices from D-Link and Motorola, the true
positive rate is relatively lower, meaning that SaTC collects
more false positive keywords. We manually analyzed these
false positives and show the common reasons in Table 7. Most
of the false positives are constant strings, function’s parame-
ters and values of the id labels. We plan to investigate these
false positives and will add corresponding methods in the
input keyword extraction module to filter them out.

False Positives of Action Keywords. We take a method
similar to the above one to check the false positives of
action keywords. The key difference is that we only use
register-like functions to search the true positives, such as
Register_Handler in Listing 1. The vAct/tAct column of Ta-
ble 8 shows the result of our verification. For most devices
from Tenda, TOTOLink and Motorola, SaTC can achieve
higher than 70% true positive rate. For the other devices, the
true positive rate is lower, and even reaches zero for two Net-
gear routers. We manually checked these results and found a
common reason that renders SaTC to have a significant false
positive rate under our verification method: the real action
keywords are not used to register or call handler functions;
For example, Netgear R7000 router stored function pointers
of all handler functions inside a function call table and merely
uses the action keywords to get the index of the associated
function in the table. In this way, even if SaTC successfully
identified real action keywords, our verification method rely-
ing on register-like functions cannot confirm their correct-
ness. We plan to identify such code patterns for particular
devices, and define specific rules to handle them properly.

False Negative. To understand the false negatives of our
bug detection results, we conservatively treat all strings in
a border binary as the taint sources and launch data-flow
tracking for each of them. Our goal here is to check whether
we can effectively find vulnerabilities starting from back-end
strings that have no appearance in the front-end. Since this
experiment relies on tedious human effort to verify each alert
(true positive or not), we randomly select seven devices to
conduct the false negative verification. We keep the taint
engine running for each device until all strings have been
tested, which takes 5 to 113 hours. For all 408 reported alerts,
we manually check whether they are true positives or not.



Table 8: Input keywords collected, filtered and used during our evaluation. For each device, we provide the number of front-end files
(Input). For input keyword extraction, the table shows the number of unfiltered keywords (str), filtered keywords (fKey) and the analysis time.
For border binary recognition, we show the number of all strings in the back-end binaries (strAll), the border binary name (borderBin), and the
keywords matched in border binary (borderKey). In the verification part, (vPar) and (tPar) represent numbers of verified and total parameter
keywords, while (vAct) and (tAct) represent numbers of verified and total action keywords; % represents the proportion. Other than httpd,
Netgear samples contain border binaries for other services, such as upnpd.

Vendor Series Input Keyword Extraction Border Binary Recognition Verification
str fKey time(s) strAll borderBin borderKey time(s) vPar/tPar % vAct/tAct %

Tenda AC15 119 7,771 995 254 241,314 httpd 447 51 223/319 69.91 101/128 78.91
Tenda AC18 119 7,663 984 145 119,537 httpd 447 57 222/319 69.59 101/128 78.91
Tenda W20E 134 10,581 1,744 102 139,885 httpd 834 102 423/589 71.82 222/245 90.61
Tenda G1 147 14,241 137 1,952 123,960 httpd 636 75 422/586 72.01 5/56 8.39
Tenda G3 147 14,241 137 1,952 123,960 httpd 636 75 422/586 72.01 5/56 8.39
Netgear XR300 864 18,889 4,232 683 517,254 httpd 1,226 1,280 330/1,014 32.54 11/211 5.21
Netgear R6400 489 5,692 1,729 32 478,005 httpd 887 449 288/706 40.79 10/180 5.56
Netgear R7000 610 9,421 2,304 167 330,087 httpd 1,132 452 456/920 49.57 0/211 0.00
Netgear R7000P 607 8,670 2,257 67 467,706 httpd 1,121 579 455/919 49.51 0/201 0.00
D-Link 878 251 26,389 3,415 492 139,948 prog.cgi 735 170 223/735 45.44 140/520 26.92
D-Link 882 252 25,608 3,025 1,149 522,317 prog.cgi 878 670 256/416 61.54 91/461 19.74
D-Link 823G 110 10,200 2,544 370 48,005 goahead 255 78 27/167 16.17 24/87 27.59
TOTOLink T10 59 6,217 869 231 51,898 system.so 64 24 35/41 85.37 20/23 86.96
TOTOLink A950RG 73 7,520 1,267 303 53,931 system.so 180 31 53/66 80.30 35/114 30.70
Motorola C1 105 12,347 2,133 315 90,652 prog.cgi 370 89 44/147 29.93 175/223 78.48
Motorola M2 103 10,982 1,863 303 83,911 prog.cgi 333 93 38/137 27.74 143/196 72.96

Figure 6: Number of the keywords detected by keyword reference
locator, implicit entry finder and cross-process entry finder.

According to our analysis, all alerts related to strings absent
in the front-end are confirmed to be false positives, except
for two cases in Tenda AC18, which are related to strings
cmdinput and data. The string cmdinput does not appear in
the front-end, and data exists in main.js but is filtered by
the input keyword extraction module as many front-end files
use it (see §3). The result shows that compared to testing all
back-end strings in a tedious way, SaTC just introduces very
few false negatives (2 out of 408).

Source of True Input Keywords. Figure 6 lists the number
of keywords in each sample detected by keyword reference
locator, implicit entry finder and cross-process entry finder.
We can see that most of the input keywords are collected by
the keyword reference locator, especially for Tenda devices.
Netgear samples contain relatively more keywords located
by implicit entry finder, while D-Link samples contain more
keywords related to shared data between different binaries.

Table 9: Performance of Trace Merging. We list the number of
the sensitive trace (#Sensitive), the number of the path after trace
merging (#Merging) and the ratio of the merged traces (%).

Vendor Series Command Injection Memory Corruption SUM
#Sensitive #Merged % #Sensitive #Merged % %

Tenda AC18 207 113 54.59 38917 1,634 4.20 4.47
Tenda AC15 202 110 54.46 38923 1,638 4.21 4.47
Tenda W20E 93 48 51.61 955,123 1,287 0.13 0.14
Tenda G1 45 36 80.00 794,104 1,082 0.14 0.14
Tenda G3 45 36 80.00 794,104 1,082 0.14 0.14
Netgear WNR3500 69 22 31.88 1,635 164 10.03 10.92
Netgear XR300 14,728 718 4.88 24,079 1,363 5.66 5.36
Netgear R6400 31,605 605 1.91 41,120 1,109 2.70 2.36
Netgear R7000P 62,840 858 1.37 143,455 2,192 1.53 1.48
Netgear R8000 19,588 718 3.67 38,929 1,616 4.15 3.99
Netgear R8500 23,537 528 2.24 35,740 893 2.50 2.40
D-Link 878 17,153 246 1.43 64,075 1,545 2.41 2.20
D-Link 823G 6,811 121 1.78 257,410 313 0.12 0.12
TOTOLink T10 62 21 33.87 1 1 100.00 34.92
TOTOLink AR950 95 28 29.47 18 16 88.89 38.93

7.3 Efficacy of Taint Analysis
We further inspect the taint analysis process to understand the
benefits of our three optimizations proposed in §5.

Trace Merging. SaTC reduces the number of paths to be
explored by merging the call traces with the same input entry
(§5.2). Table 9 shows the number of explored paths before and
after trace merging. The results confirm that the trace merging
strategy is useful: for Netgear, D-Link and Tenda devices that
have many sensitive traces to sink functions, SaTC merges
more than 89% of redundant paths; for other devices, this
technique also merges more than 61% of their start points.

Path prioritization. SaTC found five parser and sanitizer
functions in Netgear samples. Three of them are used to en-
code the character entities. Two of them are used to resolve the



1 void formDelVpnUsers(...)
2 {
3 // reference point
4 taint = websGetVar(wp, "vpnUserIndex", byte_E945C);
5 strncpy(sUserIndexCopy2 , taint, 0x3Fu);
6 getVpnServerType(sServerType);
7 for (pIndex = (unsigned int8 *)strtok_r((char *)

sUserIndexCopy2 , "\t", (char **)&pSavePtr); pIndex;
pIndex = (unsigned int8 *)strtok_r(0, "\t", (char **)&
pSavePtr)) {

8 v6 = atoi((const char*)pIndex);//over-tainting -> v6
9 get_item_in_list("vpn.ser.pptpuser", "&", v6 + 1, 1,

sUserId);//over-tainting -> sUserId
10 doSystemCmd("cfm post netctrl %s?op=%d,index=%s", (const

char *)sServerType , 10, (const char *)sUserId);
11 }
12 }

Listing 5: Pseudocode of false positive sample.

input string, escape the characters and generate the internal
variables.
Taint Engine. For all firmware samples in Table 9, SaTC
raised 101 alerts, 46 of them are true positives. We manually
analyzed twenty false positives in the alerts. As Listing 5
shows, some over-taint problems occur because of missing
abstracts for the common functions, such as atoi. The taint
state of the character variable pIndex is passed to an integer
variable (line 8), which is used as an index to extract data from
a list and store the data into a string sUserId (line 9). SaTC
raises the alert because v6 finally affects the doSystemCmd

function (line 10). In fact, the attacker cannot control the
string through interface keywords vpnUserIndex.

8 Discussion

In this section, we discuss the ability and limitation of SaTC,
and explore the improvement direction in the future.
Circle of Competence. Our evaluation shows that shared
keywords between different components of IoT devices can
effectively bridge points inside complicated data-flows. This
short path saves a lot of analysis effort and thus improves the
efficacy of bug finding. In fact, we can extend SaTC to detect
bugs in other systems, as long as they use shared keywords to
deliver data. For example, environment variables are widely
used in malware applications as a stealthy way to share infor-
mation. In this case, we can use the same variable names to
find the connection between different malware processes and
to help detect critical operations in malware.
Implicit Data Dependency. During our evaluation we find
several cases that the input entry in the back-end programs
does not have a corresponding keyword in the front-end. Our
implicit entry locator (§4) helps SaTC mitigate this issue to
detect more implicit input entries. However, there are cases
that even the implicit entry locator fails to build connections,
where SaTC will miss potential bugs associated with these
entries. For example, in an old vulnerability CVE-2019-7298,
the back-end program directly reads data from the HTTP
message without using any keyword (more details in List-

1 int sub_42383C(...) {
2 char* body;
3 char log[0x1388];
4 /*sub_432D28 extracts message body from the request.*/
5 sub_432D28(body);
6 memset(log, 0, 0x1388);
7 snprintf(log, 0x1387, "echo '%s' >/var/hnaplog", body);
8 system(log);
9 }

Listing 6: Pseudocode of CVE-2019-7298. The device uses the
Home Network Administration Protocol (HNAP) to provide service
for users to configure and manage it. However, while handling the
POST request of HNAP, the function sub_42383C does not check
and filter the message body and writes it into a log file directly via
executing echo command (line 8). A malicious message body will
result in command injection vulnerability.

ing 6), and thus SaTC will miss this bug. In another example,
the firmware of D-Link 823G uses function apmib_set and
apmib_get to share data between different functions, without
using any keyword. SaTC will miss the associated vulnerabil-
ity CVE-2019-7297. We will analyze more cases and attack
surfaces and try to find hidden patterns to build the relation-
ship between front-end and back-end, so as to enhance the
ability to discover vulnerabilities.
Efficiency v.s. Completeness. Analysis efficiency and bug
completeness are two key factors of any bug detection mech-
anisms. Compared to previous work like KARONTE, SaTC
trades the completeness of bug finding for the analysis effi-
ciency. On the one hand, the method will help us detect the
vulnerabilities related to the front-end in a more timely man-
ner. According to our evaluation in §7.2, it requires five times
more effort to test all potential data entries of the back-end in
a brute-force way. On the other hand, our tool may result in
false negatives if the back-end entries do not have common
strings associated with the front-end, or the entries cannot
be detected via the heuristic methods. Fortunately, the empir-
ical evaluation shows that our method introduces very few
false negatives for seven devices from two vendors. Therefore,
SaTC achieves an empirically reasonable balance between
the analysis completeness and the bug-finding efficiency.
Encryption and Obfuscation. As the majority of the secu-
rity threats in IoT devices exist at the application layer and the
network layer, parts of the IoT device manufacturers adopt
code encryption or obfuscation to protect intellectual prop-
erty from reverse engineering attacks [2, 6, 15, 20, 47]. These
obfuscation techniques will limit the capabilities of SaTC.
For example, the string encryption technique could hinder
SaTC from building the relationship between the front-end
and the back-end. We leave the solutions for dealing with
these obfuscation techniques to future work.

To measure the applicability of SaTC regarding the concern
of encryption and obfuscation, we conducted an empirical
evaluation. Specifically, we collected 186 widely used home
Wi-Fi routers from seven leading vendors and inspected them
to find encryption and obfuscations. We found that only four
out of 186 devices are protected with encryption and all of



them are D-Link routers. After we manually decoded these
four samples, SaTC can handle them just as other devices. We
can use off-the-shelf unpacking tools (e.g., binwalk) to unpack
all devices except one failure due to the unsupported filesys-
tem (Tenda AC11). Only one device, specifically NetGear
R6400 v2, uses obfuscation to protect parts of the front-end
JavaScript code, and SaTC failed to extract any keywords
from these JavaScript files. However, the HTML files are not
obfuscated, where SaTC still can extract many useful key-
words and successfully found two command injection vulner-
abilities. Overall, encryption and obfuscation techniques have
not been widely used in real-world IoT devices, and SaTC
is still able to discover vulnerabilities for a large number of
firmware samples. We plan to use existing deobfuscation
approaches [4, 19, 29] to make SaTC more applicable.

9 Related Work

Instead of listing all related work, we focus our discussion
on the most related ones: dynamic and static methods of
vulnerability discovery for firmware, and taint tracking.
Dynamic Analysis. Many works [22, 48, 54, 55] use fuzzing
technology to detect vulnerability in IoT devices. SR-
Fuzzer [52] is an automated fuzzing framework for testing
physical SOHO (small office/home office) routers, which
needs to capture a large number of web requests from the
running devices firstly and then could model the user-input
semantics to generate test cases. FIRMADYNE [7] is a state-
of-the-art firmware emulation framework, which designed
for automated dynamic analysis for a large-scale embedded
firmware. Although FIRMADYNE is promising, its emula-
tion rate of network reachability and web service availability
is considerably low. FIRMAE [23] uses several heuristics to
address the problems and increases the emulation success
rate. However, it can only handle observed cases and may not
apply to new devices and new configurations. IoTFuzzer [8]
tries to find memory corruption vulnerabilities in IoT devices
via their official apps, therefore it is firmware-free. However,
it’s trapped in the coverage of code and attack surface, which
is a common challenge for dynamic fuzzing analysis. FIRM-
AFL [53] is a greybox fuzzer for IoT devices via emulating the
target firmware. However, it’s hard for researchers to achieve
a faithful emulation with various kinds of CPU architectures.
Static Analysis. Static analysis-based techniques are
very common in the field of IoT vulnerability detection.
KARONTE [34] leverages static analysis techniques to per-
form multi-binary taint analysis. However, the researchers
only focus on back-end binaries and ignore the user-input
context stored in the front-end files, which will cause a large
number of false negatives. Firmalice [37] provides a frame-
work for detecting authentication bypass vulnerabilities in
binary firmware based on symbolic execution and program
slicing. However, it suffers from overwhelming the constraint
solver. FIE [17] utilizes the symbolic execution to analyze

open-source MSP430 firmware programs. However, complete
analyses are intractable for some firmware and various sources
of imprecision in the analysis may lead to false positives or
false negatives.
Taint Tracking. Several prior works [5,24,34] use taint anal-
ysis to discover the vulnerability in IoT devices. DTaint [9]
focuses on the data generated by recv and other similar func-
tions, but it ignores the semantic of the front-end files. Cryp-
toREX [51] only identifies the crypto misuse problem of IoT
devices. Some researchers [12, 27, 28] focus on enhancing
the availability of taint analysis. TaintInduce [11] tries to
increases the accuracy of individual propagation rules via
learning platform-specific taint propagation rules from pairs
of instructions. Greyone [18] proposes a fuzzing-driven taint
inference solution FTI, which is utilized to get more taint
attributes as well as the precise relationship between input
offsets and branches. Neutaint [36] uses neural program em-
beddings to track information flow, and utilizes symbolic exe-
cution to generate training data with high quality to improve
the flow coverage. However, accumulated errors and large
overhead are still big challenges for Dynamic Taint Track.

10 Conclusions

We propose SaTC, a novel approach to detect security vul-
nerabilities in embedded systems. Based on the insight that
variable names are commonly shared between front-end files
and back-end functions, SaTC precisely identifies the input
entry in the back-end binaries. Then, it utilizes our taint engine
customized for embedded systems to efficiently detect danger-
ous use of untrusted input. SaTC has successfully discovered
33 zero-day software bugs from 39 firmware samples, and 30
of them have been assigned CVE/CNVD/PSV IDs. Our evalu-
ation result shows that SaTC outperforms the state-of-the-art
tool on discovering bugs in firmware samples.
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