
CountDown: Refcount-guided Fuzzing for Exposing Temporal
Memory Errors in Linux Kernel

Shuangpeng Bai
The Pennsylvania State University

State College, United States
shuangpengbai@psu.edu

Zhechang Zhang
The Pennsylvania State University

State College, United States
zbz5352@psu.edu

Hong Hu
The Pennsylvania State University

State College, United States
honghu@psu.edu

ABSTRACT

Kernel use-after-free (UAF) bugs are severe threats to system secu-
rity due to their complex root causes and high exploitability.We find
that 36.1% of recent kernel UAF bugs are caused by improper uses
of reference counters, dubbed refcount-related UAF bugs. Current
kernel fuzzing tools based on code coverage can detect common
memory errors, but none of them is aware of the root cause. As a
consequence, they only trigger refcount-related UAF bugs passively
and coincidentally, and may miss many deep hidden vulnerabilities.

To actively trigger refcount-related UAF bugs, in this paper,
we propose CountDown, a novel refcount-guided kernel fuzzer.
CountDown collects diverse refcount operations from kernel exe-
cutions and reshapes syscall relations based on commonly accessed
refcounts. When generating user-space programs, CountDown
prefers to combine syscalls that ever access the same refcounts, aim-
ing to trigger complex refcount behaviors. It also injects refcount-
decreasing and refcount-accessing syscalls to intentionally free the
refcounted object and trigger invalid accesses through dangling
pointers. We test CountDown on mainstream Linux kernels and
compare it with popular fuzzers. On average, our tool can detect
66.1% more UAF bugs and 32.9% more KASAN reports than state-
of-the-art tools. CountDown has found nine new kernel memory
bugs, where two are fixed and one is confirmed.

CCS CONCEPTS

• Security and privacy→ Operating systems security; Vulner-
ability scanners.

KEYWORDS

Use-After-Free (UAF); Reference Counting; Kernel Fuzzing

ACM Reference Format:

Shuangpeng Bai, Zhechang Zhang, and Hong Hu. 2024. CountDown:
Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux
Kernel. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.
3690320

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690320

1 INTRODUCTION

Linux kernel has the highest privilege to access all computing re-
sources, and therefore, attackers like to exploit kernel vulnerabilities
to launch severe attacks such as privilege escalation [2, 5, 7, 26, 50]
and information leakage [25, 45, 46, 51]. Among all kernel vulnera-
bilities, the sophisticated use-after-free (UAF) bugs are getting more
attention from security researchers and kernel maintainers, since
they are challenging to detect, analyze and fix [45, 47]. UAF bugs
are invalid memory accesses via dangling references where referred
memory objects have been released. To mitigate UAF bugs, Linux
kernel relies heavily on reference counters (refcount for short) for
automatic object management [27, 40]. A refcounted object con-
tains a refcount instance that represents the number of active object
references. A zero-value refcount means the object has no active
reference, and the memory manager should release the object auto-
matically. Refcount helps avoid UAF bugs as long as the refcount
value is consistent with the number of active object references.

However, improper uses of refcounts can bring in new UAF bugs.
For each refcounted object, developers should invoke proper APIs
to increase the refcount when creating a reference and decrease
the refcount when destroying a reference. If developers make a
mistake, the number of references will be inconsistent with ref-
count. The memory manager may prematurely free an object when
active references still exist. If the kernel uses dangling references to
visit released objects, it will trigger UAF bugs [17]. We term them
refcount-related UAF bugs. We investigate fixed memory errors
reported by Syzbot in recent three years [42] to understand the
prevalence of refcount-related UAF bugs. We consider a UAF bug
as refcount-related if the incorrectly accessed object is freed by the
refcount mechanism. We collect 342 memory errors, including 205
UAF bugs. 74 of them are refcount-related UAF bugs, accounting
for 36.1% of all UAF bugs and 21.6% of all KASAN reports. This
result confirms the prevalence of refcount-related UAF bugs.

Recent research efforts adopt coverage-guided fuzzing to test
Linux kernel and detect thousands of bugs [42], including many
UAF issues. The idea is to utilize code coverage to guide the gener-
ation of user-space programs, which invoke various syscalls to test
the kernel code. For example, Syzkaller [43], the most popular ker-
nel fuzzer, defines syscall grammars and utilizes relations among
different syscalls to guide the program generation. It takes two
factors to build syscall relations, specifically, (1) data flows across
syscall arguments and return values, and (2) frequencies that two
syscalls are used in the same program. When mutating a program,
Syzkaller randomly selects one existing syscall and inserts a new
syscall that is strongly related to the chosen one. If the new pro-
gram triggers previously unseen kernel code, Syzkaller will save
it into a queue for future mutations. Recent efforts [32, 37] adopt

https://doi.org/10.1145/3658644.3690320
https://doi.org/10.1145/3658644.3690320
https://doi.org/10.1145/3658644.3690320


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

1 int llcp_sock_bind(...) {
2 // reference += 1; counter += 1;
3 llcp_sock->local = nfc_llcp_local_get(local);
4 // ???; counter -= 1;
5 nfc_llcp_local_put(llcp_sock->local);
6 + // reference -= 1;
7 + // llcp_sock->local = NULL; <-- patch
8 }

Figure 1: Buggy reference counting in kernel

1 void main(void) { // reference (1) counter (1)
2 int sock1 = socket(...); // +0 => 1 +0 => 1
3 int sock2 = socket(...); // +0 => 1 +0 => 1
4 bind(sock1, &addr, ...); // +1 => 2 +1,-1 => 1
5 bind(sock2, &addr, ...); // +1 => 3 +1,-1 => 1
6 close(sock1); // -1 => 2 -1 => 0 (free)
7 close(sock2); // use-after-free bug
8 }

Figure 2: User-space program triggering a kernel bug

1 void main(void) {
2 int sock1 = socket(...);
3 bind(sock1, &addr, ...);
4 close(sock1);
5 }
6 // simple program in corpus
7 // that tests the function
8 // of socket, bind and close

Figure 3: A simple program

static and dynamic program analyses to refine syscall relations,
aiming to generate unique syscall combinations to maximize the
code coverage. Meanwhile, researchers try to construct accurate
grammars to generate more valid syscalls, like through manual
efforts [43], static analysis [16, 21, 38], or dynamic analysis [9].

However, current feedback focuses on code coverage [32, 37, 43]
and only detects kernel UAF bugs passively and coincidentally dur-
ing the process of code exploration, whereas many UAF bugs are
irrelevant to reaching new code. Especially for refcount-related
UAF bugs, triggering them requires to execute various refcount
operations many times to reduce the refcount to zero before the
kernel frees a vulnerable object. These necessary repetitions usu-
ally do not trigger new code or branch, and thus are not favored
by current feedback mechanisms. Figure 1 shows the vulnerable
code of bind related to the UAF bug CVE-2021-23134 [3]. In general,
llcp_sock_bind forgets to destroy an obsolete reference but cor-
rectly reduces the refcount. Figure 2 provides a proof-of-concept
(PoC), which invokes different syscalls at least two times before
kernel AddressSanitizer (KASAN) [22] captures the UAF bug.

To address the limitation of code coverage-based feedback, in
this paper, we propose CountDown, a novel technique that lever-
ages refcount operations to guide program generation to promptly
expose kernel temporal memory bugs, such as use-after-free and
double free. Our insight is that the refcount mechanism is a sub-
stantial root cause of many UAF bugs (see Figure 5), and therefore,
diversifying refcount operations will have higher opportunities to
expose refcount-related UAF bugs. Specifically, we collect refcounts
accessed by different syscalls, and utilize the number of commonly
accessed refcounts (or shared refcounts) to build syscall relations.
We encourage combining syscalls that ever operate on more shared
refcounts, in the hope of triggering more sophisticated refcount
operations that will ultimately lead to refcount-related UAF bugs.

CountDown contains four key components. First, it will dynam-
ically learn refcount-based relations between different syscalls. We
instrument Linux kernel to record all accessed refcounts for each
executed syscall, and identify commonly visited refcounts among
different syscalls to calculate their relations. Second, it utilizes the
refcount-based relation to help generate new programs. At the
early stage of fuzzing, we utilize previous coverage-based relation
to boost the code coverage. As time goes on, we set higher priority to
refcount-based relations such that the code generation will focus on
exploring new operations on refcounts. Third, when measuring the
quality of generated programs, we take newly visited refcounts by
each syscall into consideration. Such unseen (syscall,refcount) pairs
indicate new access patterns and we will update refcount-based
relations accordingly. At last, we use refcount-based relations to
customize the program towards triggering UAF bugs. Particularly,
we insert multiple refcount-decreasing syscalls to the program to
reduce the refcount to zero, which forces the memory manager to

free the refcounted object. We also insert syscalls that ever access
the same refcount in order to trigger invalid after-free uses.

We build a prototype of CountDown based on Syzkaller, em-
bedding our designs of refcount-guided fuzzing. Our implementa-
tion consists of 477 lines of C code, 751 lines of Go code, and 190
lines of Python code. We also modify 438 lines of C code in Linux
kernel for the instrumentation purpose. Currently, CountDown
supports testing three mainstream Linux kernels, i.e., v5.15, v6.1
and v6.6. Since our design is general, CountDown should work
on any version with moderate efforts to adopt the instrumentation.

We evaluate CountDown on three different Linux kernel ver-
sions and compare it with the state-of-the-art kernel fuzzers, includ-
ing Syzkaller, MoonShine, and Actor. During 72-hour fuzzing
evaluations, CountDown produces at least 66.1% more UAF bugs
and 32.9% more KASAN reports than other tools. It can effectively
learn 110k new (syscall,refcount) pairs on average, demonstrating
its capability of continuously learning and leveraging refcount op-
erations for fuzzing. We report nine previously unknown kernel
memory errors, where two of them are fixed and one is confirmed.

In summary, we make the following contributions.

• We propose the idea of refcount-guided fuzzing to test Linux
kernel which focuses on exposing sophisticated temporal
memory safety issues.

• We implement CountDown that constructs and utilizes
refcount-based relations to guide the generation of user-
space programs for triggering refcount-related UAF bugs.

• We evaluate our implementation on real-world Linux kernels.
CountDown outperforms existing tools by exposing 66.1%
more UAF errors and 32.9% more KASAN reports. It has
detected nine new kernel memory errors.

Open Source. We will release the source code of CountDown at
https://github.com/psu-security-universe/countdown.

2 BACKGROUND AND PROBLEM

We first introduce the refcount mechanism used in Linux kernel.
Then, we present the refcount-related UAF issue and investigate
their prevalence. At last, we examine current fuzzing techniques
and discuss their limitations in detecting refcount-related UAF bugs.

2.1 Refcount in Linux Kernel

Linux refcount mechanism is part of the kernel memory manage-
ment infrastructure [11, 23]. It is designed to track the number of
active references of each refcounted kernel object. Figure 4 shows
the common usage of refcount in Linux kernel. First, the kernel de-
fines two sets of general structures and APIs to encapsulate refcount
details, specifically, refcount_t and kref. The latter is a wrapper
of the former, and both are widely used. For example, kref_get
increases the internal refcount by one, while kref_put reduces the



CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 // general structures and functions
2 typedef struct refcount_struct { atomic_t refs; } refcount_t;
3 struct kref { refcount_t refcount; };
4 void kref_get(struct kref *kref) { refcount_inc(&kref->refcount); }
5 int kref_put(struct kref *kref, void (*release)(struct kref *kref)){
6 if (refcount_dec_and_test(&kref->refcount)) { release(kref); return 1; }
7 return 0;
8 }
9 // one concrete kernel structure with refcount
10 struct nfc_llcp_local { struct list_head list; struct kref ref; ... };
11 struct nfc_llcp_local * nfc_llcp_local_get(struct nfc_llcp_local *local) {
12 kref_get(&local->ref);
13 return local;
14 }
15 int nfc_llcp_local_put(struct nfc_llcp_local *local) {
16 if (local == NULL) return 0;
17 return kref_put(&local->ref, local_release);
18 }

Figure 4: Definitions and usages of refcount in Linux kernel. kref

structure and APIs are merely wrappers of refcount_t type.

refcount and if the refcount reaches zero, invokes the callback func-
tion release to free the refcounted object. Refcounted kernel struc-
tures will include a refcount member, like the ref member of struct
nfc_llcp_local, and define two related APIs, one put function and
one get function. When an instance of a refcounted structure is ini-
tialized, the kernel will invoke kref_init to set the initial refcount
value, which internally calls refcount_set. When a new reference is
created, developers will use the get function (nfc_llcp_local_get
here) to increase the refcount. When a reference is destroyed, de-
velopers will call the put function (nfc_llcp_local_put here) to
decrease its refcount, and if necessary, release the object. In this
way, developers invoke proper APIs around reference operations
to update refcount locally, while the memory manager will release
unnecessary objects and enforce temporal memory safety globally.

Linux developers are adopting the refcount mechanism to man-
age more kernel objects. Our measurement reveals that the number
of kernel structures containing refcount_t or kref members is in-
creased from 617 in kernel 4.19 to 1039 in kernel 6.8. Recent work
CID [40] investigated the refcount usage in Linux v5.6-rc2. Among
792 refcount fields, 644 have type refcount_t or kref, accounting
for 81.3%, while others are atomic variables. Given the high cover-
age and growing usage of refcount_t and kref, in this paper, we
focus on refcount_t and kref, and ignore atomic variables.

2.2 Refcount-related Use-after-free

Refcount works well if the refcount value is consistent with the
number of active references. However, developers may make mis-
takes when handling references and refcount, leading to imbalance
and bugs. When a refcount is smaller than the reference number,
the manager will release objects prematurely; if the kernel accesses
the freed object via an active (but dangling) reference, it will trigger
a UAF bug. When a refcount is larger than the reference number,
the manager cannot release the unused object, leading to memory
leaks. Refcount-related bugs are common in Linux kernel and user-
space applications adopting refcount, like browsers [24, 27, 29, 40].
Developers are encouraged to skip refcount operations for better
performance, which exacerbates refcount-related UAF bugs [17, 30].

Figure 1 shows the simplified bind syscall that contains the UAF
bug CVE-2021-23134 [3]. At line 3, the code creates a new refer-
ence llcp_sock->local of a nfc_llcp_local object and invokes
nfc_llcp_local_get to increase the refcount. Both the reference

2021 2022 2023 Total
0

50

100

150

200

0%

20%

40%

60%

80%

100%
Refcount-unrelated UAF
Refcount-related UAF
Ratio of refcount-related UAF

Figure 5: Statistics of use-after-free bugs in Linux kernel. We investi-
gated all fixed memory errors reported by Syzbot in the past three years.

number and the refcount are increased by one. After completing this
reference use, the kernel should destroy it and reduce the refcount.
The decrement is done correctly by invoking nfc_llcp_local_put,
but the code leaves the reference alive, making the reference num-
ber and the refcount inconsistent. Figure 2 is the proof-of-concept
(PoC) for triggering this bug. During kernel booting, it creates one
reference of the object and sets the refcount to 1. Syscall socket
does not change the reference or the refcount. At line 4, syscall
bind calls the vulnerable llcp_sock_bind in kernel. This syscall
leaves one reference in the kernel (i.e., two references in total), but
keeps refcount as 1. The second invocation of bind leads to three
references but the refcount remains 1. Syscall close will destroy
one reference and decrease the refcount, leading to a zero refcount.
The memory manager will release the object which makes the re-
maining two references dangling. The second close accesses the
freed object via one dangling pointer, triggering the UAF bug.

To understand the necessity of exposing refcount-related UAF
bugs, we investigate all Linux memory errors that are reported by
Syzbot and get fixed in recent three years [42].We treat a UAF bug as
refcount-related if the incorrectly accessed kernel object is released
automatically by the kernel refcount mechanism. Since refcount
should help avoid UAF bugs among refcounted objects, such bugs
will happen only if something is wrong within refcount operations.
Figure 5 shows our investigation results. Each bar indicates the
number of UAF bugs; the shaded portion highlights refcount-related
ones; the curve shows the ratio of the latter among the former. We
collect 342memory errors, including 205 UAF bugs, 95 out-of-bound
accesses, and 42 other issues. 74 UAF bugs are refcount-related,
accounting for 36.1% of all UAF bugs and 21.6% of all memory errors.
These results show that refcount-related UAF bugs are emerging,
prevalent, and severe threats to kernel security. We should develop
techniques to expose these vulnerabilities as early as possible.

2.3 Existing Techniques of Kernel Fuzzing

Recent research efforts extensively explore fuzzing techniques to
test the Linux kernel, and successfully detect thousands of bugs [14,
32, 37]. The basic idea of fuzzing is to generate unexpected test
cases and feed them into the tested program to trigger crashes
and other abnormal behaviors [15, 28, 31, 49]. A kernel fuzzer will
construct user-space programs that invoke different system calls to
reach abnormal states in kernel space. For example, Syzkaller [43]
is the most popular open-source coverage-guided kernel fuzzer and
serves as the basis for many advanced kernel fuzzers. It generates
and executes test cases in virtual machines to test Linux kernel.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

Meanwhile, it adopts various kernel sanitizers, like KASAN and
KMSAN [6, 22] to catch abnormal events and produce bug reports.
Syscall-relation Learning. To trigger complicated kernel states,
Syzkaller identifies and invokes related syscalls together in user-
space programs. It calculates syscall relations through static analy-
sis and dynamic analysis. We call this relation 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛. First,
Syzkaller considers the data-flow dependency between syscall
arguments and return values. If one syscall writes to an argument
or returns a value of type 𝑇 while another syscall requires an ar-
gument of the same type, Syzkaller will set a higher value to this
relation of these two syscalls. Since this relation is determined by
the syscall prototype, it will not change unless Linux kernel devel-
opers update the prototype. Therefore, Syzkaller names it static
relation and we use 𝑆𝑡𝑎𝑡𝑖𝑐𝑃𝑟𝑖𝑜 to represent it. Second, Syzkaller
counts the frequency of two syscalls used together in the seed cor-
pus. If two syscalls are used together in one program, Syzkaller
will add 1 to the relation of these two syscalls. This relation will
be different for various seed corpus. Therefore, Syzkaller calls it
dynamic relation and we use 𝐷𝑦𝑎𝑛𝑚𝑖𝑐𝑃𝑟𝑖𝑜 to represent it. After
normalization, Syzkaller merges these two relations to produce
the 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 for each syscall pair, using the following formula1.

𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑡𝑎𝑡𝑖𝑐𝑃𝑟𝑖𝑜 ∗ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑟𝑖𝑜 (1)

To generate a new user-space program from one existing test case,
Syzkaller randomly selects a syscall, say 𝐴, and inserts another
syscall that has a high 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 value with 𝐴.

Several following-up works propose advanced mechanisms to
learn more accurate relations. MoonShine [32] reduces sample
programs to a minimal set that can trigger the same code coverage.
With the reduced corpus, it can boost the fuzzing process quickly.
Healer [37] removes syscalls one by one and checks which of
remaining syscalls have different execution traces. It constructs
relations between the removed syscall and the affected ones. Ac-
tor [14] collects heap actions triggered by each syscall during the
program execution, like memory allocation, deallocation and ac-
cess. It creates specific templates for particular bugs, and fills the
template based on the relations between syscalls and heap actions.
Input Prioritization. Modern fuzzers commonly adopt code cov-
erage to guide the input selection and prioritization [8]. In particular,
if a randomly generated test case triggers previously unseen code or
branch [44], the fuzzer will allocate more energy (i.e., CPU cycles)
to mutate it. The assumption is that exploring more code brings
a higher probability of triggering bugs. Kernel fuzzers [32, 37, 43]
also adopt similar feedback to prioritize user-space programs that
trigger new code coverage. For example, Syzkaller collects branch
coverage, called signal, to identify interesting new programs.

2.4 Limitations of Previous Methods

Previous syscall relations and input prioritization fall short in ex-
posing refcount-related UAF issues. Syzkaller and MoonShine
calculate syscall relations based on syscall signatures and their com-
mon usages. These high-level features can hardly capture low-level
refcount operations, and thus cannot help expose refcount-related
UAF bugs. Healer [37] infers syscall relations based on the change

1Syzkaller developers updated this formula on April 11, 2024 to replace multiplication
with addition. We used the old version (i.e., multiplication) when building our tool.

of triggered code. However, triggering refcount-related UAF bugs
usually requires repeated executions of multiple refcount-related
syscalls, which may not trigger new code. Actor [14] maps each
syscall to their operated heap objects, which could help trigger
traditional UAF bugs. But for refcount-related bugs, a heap action
is merely the consequence of multiple complex refcount operations,
like object release triggered by zero-value refcount. Actor only
focuses on the consequence and has no awareness of the root cause,
leading to several limitations. First, Actor relies on a template
(allocate, free and use) to find UAF bugs, which frees the allocated
object immediately without introducing complex refcount opera-
tions. Second, many syscalls access a few kernel objects and thus
get prioritized by Actor, but only part of them operate on refcounts.
Third, Actor records syscalls that free operations, and assumes
that these syscalls will free the same objects in new programs.
However, to release a refcounted object, we need to invoke many
refcount-decreasing syscalls and all of them are necessary.

We use our motivating example to demonstrate these limitations.
Suppose we start with the code in Figure 3, and our goal is to
produce the PoC in Figure 2 which triggers the kernel UAF bug CVE-
2021-23134 [3]. The vulnerable implementation is shown in Figure 1
and is discussed in §2.1. To generate the PoC, the fuzzer has to
combine bind and close and call them twice separately. The relation
adopted by Syzkaller identifies strong relations between socket,
bind, close, listen and accept due to parameter types and their
common appearances. It will miss the special relation between bind
and close for triggering this refcount-related UAF bug. Healer’s
relation favors syscalls that trigger new coverage. However, adding
one more bind or close to Figure 3 does not change the kernel code
coverage and will not be prioritized by Healer. Actor can identify
that socket creates an object, bind accesses it and close frees it. It
will fill the template (allocate, free, use) with proper syscalls, but can
hardly trigger complicated refcount operations. Moreover, Actor
will identify many syscalls that access the same object, and will
use all of them regardless of their operations to refcounts. Further,
once Actor detects that syscall close releases this object, it will
use syscall close in the following mutations to release the same
object, ignoring another prerequisite that the refcount has to be 1.

The previous method of input prioritization is also insufficient to
trigger refcount-related UAF bugs. It will drop newly generated pro-
grams that do not trigger unseen code even if they have unique ref-
count operations. For refcount-related UAF bugs, even if a refcount
operation has been covered before, triggering it again via a different
syscall demonstrates a unique unseen interplay and should be used
for future mutation. For instance, function nfc_llcp_local_put
may decrease the refcount of a nfc_llcp_local object based on
runtime context. Both syscall bind and syscall close invoke this
function to reduce the refcount. However, these two syscalls have
distinct semantics and thus decrease the refcount for different pur-
poses. Even if function nfc_llcp_local_put has been covered by
previous executions of syscall bind, we should treat its invocation
by syscall close as interesting since combining these two syscalls
results in complex refcount operations and triggers a UAF bug.

https://github.com/google/syzkaller/commit/27de0a5cccaebe20ffd8fce48c2c5ec9d4b358fa


CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

New user-space programs

4-tuple 
<S, O, δ, V>

Instrumented Kernel

• identify syscall (S) and refcount (O)
• calculate refcount values (V) and changes (δ)
• filter out spontaneous operations

Program Mutator

• insert highly-related syscalls
• repeat refcount-decreasing syscalls
• inject refcount-accessing syscalls

syscall-refcount relation (S, O, δ)

syscall-syscall relation (S, S)

risky refcount states (S, V)

Refcount Analyzer

• extract syscall-syscall relations
• group syscalls by shared refcounts
• evaluate refcount state towards 0

User spaceKernel space

Input Prioritization
• has new branch coverage?
• has new (S,O) pair?

Queue of user-space programs

Previous user-space programsSeed corpus

UAF bugs

Figure 6: Overview of CountDown. Given a set of user-space programs, we will collect kernel execution traces to understand how each syscall updates
refcounts. We use this information to build a new relation between syscalls and use the new relation to guide input prioritization and mutation.

3 APPROACH OVERVIEW

To promote the detection of refcount-related UAF bugs from Linux
kernel, we propose refcount-guided fuzzing, a new mechanism that
leverages refcount operations to assist the mutation and prioritiza-
tion of user-space programs. Our insight is that refcount operations
are the root causes of many heap actions of refcounted objects,
especially for the critical object deallocation. Comparing with other
feedback mechanisms, like new code coverage [37, 43] or unseen
heap actions [14], refcount operations capture more accurate and
fine-grained changes within the heap object management. There-
fore, the guidance is likely to trigger UAF bugs related to refcounts.

To achieve the goal of refcount-guided fuzzing, we will build new
syscall relations based on refcounts accessed by multiple syscalls,
called shared refcounts. During the mutation, we will combine
syscalls that access more shared refcounts, with the hope of trig-
gering complex and error-prone refcount operations. After the exe-
cution, we will check whether the execution triggers new refcount
operations, and if so, set a high priority to mutate this program.

We use the program in Figure 3 to demonstrate how the refcount-
based guidance helps trigger refcount-related UAF bugs. A high-
quality corpus for Linux kernel may contain this simple program.
Current fuzzers like Syzkaller can generate this simple code based
on Syzlang grammar. After executing this program, we will find
a refcount, say 𝑂 , accessed by both bind and close. In particular,
bind first increases the refcount of 𝑂 and then decreases it, while
closemerely decreases the same refcount. With the refcount-based
guidance, our method will mutate this simple program in several
novel ways. First, due to the shared refcount, we will assign a higher
relation to the syscall pair (bind, close). Then, we randomly choose
one refcount accessed by this program and one syscall that accesses
this object, which could be 𝑂 and bind. After that, we will insert
another syscall that ever accesses𝑂 , like bind and close. Next, since
close decreases the refcount of 𝑂 , we will repeat it multiple times
to reduce the refcount value to zero, which forces the kernel to free
𝑂 . Following that, we will insert more syscalls that ever access 𝑂 ,
like bind and close, hoping to trigger a use-after-free bug. With the
new mutation strategy, we will likely generate the PoC in Figure 2,
and trigger the refcount-related UAF bug CVE-2021-23134.

4 DESIGN OF COUNTDOWN

We design a system, CountDown, to test our idea of refcount-
guided fuzzing for detecting refcount-related UAF bugs from Linux
kernel. CountDown contains four main components, shown in
Figure 6. First, it instruments Linux kernel to record refcount op-
erations and maps them to corresponding syscalls (§4.1). Second,
based on the execution trace, CountDown calculates the refcount-
based syscall relations (§4.2). Specifically, if two syscalls ever access
the same refcount, called shared refcount, we will assign them a
higher relation value. Third, CountDown uses the new refcount-
based relation to generate interesting user-space programs to trig-
ger refcount bugs, release vulnerable objects and reach invalid
memory accesses (§4.3). Fourth, for each newly generated program
CountDown will save it for future mutation only if its execution
triggers either new code coverage or new refcount operations (also
in §4.3). Next, we explain each component in detail.

4.1 Recording Refcount Operations

To build refcount-based syscall relations, CountDown first records
every refcount operation and its triggering syscall. We design each
record to be a 4-tuple <𝑆 , 𝑂 , 𝛿 , 𝑉>, where syscall 𝑆 updates the
refcount 𝑂 of a refcount. by 𝛿 . After the update, the refcount value
reaches𝑉 . To collect refcount operations, we instrument the general
refcount APIs used in Linux kernel, as shown in Table 1. As we
discuss in §2.1, another set of APIs on kref are simply wrappers
of refcount_t APIs. We only hook functions that directly update
refcount_t values and exclude others to avoid duplicated records.

4.1.1 Identifying Refcount𝑂 . Kernel fuzzing involves multiple par-
allel tasks running in different virtual machines (VM). To merge
records obtained from different VMs, we need a proper way to
identify and match refcounts. Within refcount functions such as
refcount_inc, we only have the address of the refcounts, which
will be different in multiple fuzzing instances due to the non-
deterministic heap management and address space layout random-
ization (ASLR) [33]. To solve this problem, we observe that all
refcounts are initialized either by the refcount_set function or via
the REFCOUNT_INIT macro. The latter is used to initialize a refcount



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

Table 1: Instrumented refcount APIs in the Linux kernel. We ignore
APIs of kref since they are merely warppers of refcount_t APIs.

Name Description

refcount_set set refcount to the given value
refcount_add add the given value to refcount
refcount_inc increase refcount by 1
refcount_dec decrease refcount by 1
refcount_add_not_zero add given value to refcount if refcount is not 0
refcount_inc_not_zero increment if the refcount is not 0
refcount_dec_not_one decrement if the refcount is not 1
refcount_dec_if_one decrement if the refounct is 1
refcount_dec_and_test decrement refcount and check if result is 0
refcount_sub_and_test subtract value from refcount and check it with 0

for global refcounted objects. Since such objects cannot be freed, we
ignore them during fuzzing and only focus on the ones initialized
by refcount_set. The call stack of refcount_set indicates a unique
purpose of the refcounted object. As long as we test the same kernel
image, the call stack information will be consistent among mul-
tiple VMs. Within refcount_set, CountDown will calculate the
checksum of the call stack and use the checksum as the cross-VM
identity (ID) for this refcount.

CountDown creates a refcount-address-ID map (RAI map) to
connect the addresses of refcounts to their refcount IDs. When one
refcount is initialized, we create an entry in the RAI map, which
consists of the refcount address and the ID. When the refcount
reaches zero, we remove the corresponding entry from the map.
For each refcount increment and decrement, we search the address
in the map to find the corresponding ID and record the refcount
operation. Many refcounts are initialized during the kernel booting
and used later by fuzzing-invoked tasks. We record all of them into
the RAI map to ensure CountDown can find the proper entry and
record the correct refcount ID for each refcount operation.

4.1.2 Passing Syscall Number 𝑆 . During fuzzing, one program in-
vokes many different syscalls through multiple threads. To connect
refcount operations with syscalls, we need to record the triggering
syscall for each operation, specifically, the Syzkaller syscall num-
ber (NR). We design two helper syscalls and add a new member
to the per-thread task structure. Before each original syscall, we
invoke the helper syscall before_sys to stores NR of the original
syscall into the new member of the current task structure. After
the original syscall, we invoke another helper syscall after_sys to
reset the member of task to a magic value. In this way, we can iden-
tify the syscall triggering each refcount operation. A magic value
indicates the syscall is not triggered by fuzzer-generated programs.
Thread-safe Recording. We design our recording process to be
thread-safe since Linux kernel utilizes multiple threads to execute
many syscalls in parallel. First, we update the program mutator
to add two helper syscalls around each original syscall and use
the same thread to execute them sequentially. Since each thread
has a distinct task structure in kernel, our method guarantees that
the recorded syscall NR is the one triggering the original syscall.
Second, we use spinlocks to protect global variables to avoid race
conditions. Therefore, our recording process is thread-safe.

4.1.3 Recording Refcount Change 𝛿 and Final Value 𝑉 . We also
record how each syscall modifies every refcount, including the
change 𝛿 and the final value 𝑉 . One syscall may modify a refcount
many times, but we only care about the overall impact 𝛿 . For each
refcount API in Table 1, we modify it to record every single refcount
change. Some refcount APIs check the refcount value to condition-
ally change the refcount. Their return values indicate whether the
operation is successful or not [20]. Based on this semantic, we
maintain a two-dimension table, with one dimension for the syscall
number, and another dimension for the refcount ID. Each table
entry records the current 𝛿 and the current 𝑉 . Within each API
function, we update the table to accumulate refcount changes. We
use before_sys to reset the table, and leverage after_sys to dump
the refcount changes and final values for the following analysis.
Example. For the program in Figure 3, CountDown will insert
before_sys and after_sys before and after every syscall, leading
to a new sequence of (before_sys, socket, after_sys, before_sys,
bind, after_sys, before_sys, close, after_sys). After running this
program within the instrumented kernel, we will collect two 4-
tuples of refcount operations, (#bind, hashX, +0, 1) and (#close,
hashX, -1, 0). hashX is the checksum of the call stack when the
kernel initializes this refcount. Given the initial refcount value 1,
syscall bind first increments and then decrements it, so the 𝛿 is 0
and the 𝑉 is still 1. Syscall close, decrements the refcount by 1,
so the 𝛿 is -1 and the 𝑉 is 0. Syscall socket does not modify this
refcount in this execution and we will not collect any record of it.

4.2 Reshaping Syscall Relation

Based on the records of refcount operations in the 4-tuple format
(𝑆 ,𝑂 , 𝛿 ,𝑉 ), we will construct multiple relations among syscalls and
refcounts to help achieve refcount-guided fuzzing.

4.2.1 Refcount-syscall Relation. Since our fuzzing strategy focuses
on refcounts, we first identify syscalls that ever change the refcount
of any object. Given a set of 4-tuples, we will only use 𝑆 ,𝑂 and 𝛿 to
fill the refcount-syscall relation map, where the key is the refcount
ID, and the value is a set of syscalls and their changes to the refcount
(i.e., 𝛿). We only consider refcount records within the same program
execution for the relation learning, since it is unreliable to build
relations between syscalls from different programs. The first two
tables in Figure 7 demonstrate our method to get the refcount-
syscall map. Five original records in the first table are classified into
two groups in the second table, where three syscalls access the first
refcount and two syscalls visit the second.

4.2.2 Syscall Relation Reshaping. Based on shared refcounts, we
reshape syscall relations for refcount-guided fuzzing. We call our
new syscall relation 𝑅𝑒 𝑓 𝑐𝑛𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛. Our assumption is that if two
syscalls access the same refcount within one execution, they have
a stronger relation with respect to triggering more complicated ref-
count operations. For each refcount in the refcount-syscall relation
map, we split its associated syscalls into a set of syscall pairs. The
third table in Figure 7 shows the result. After that, we will create
the syscall relation table, where each unique pair of syscalls has an
entry, and the value is the number of shared refcounts accessed by
both syscalls. For example, in the last table of Figure 7, 𝑆0 and 𝑆1
operate on two refcounts, and therefore, their relation value is 2.



CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Syscall Refcount 𝜟
S0 O0 𝛿0
S0 O1 𝛿1
S1 O0 𝛿2
S2 O0 𝛿3
S1 O1 𝛿4

Refcount {(Syscall, 𝜟)}

O0

(S0, 𝛿0)
(S1, 𝛿2)
(S2, 𝛿3)

O1
(S0, 𝛿1)
(S1, 𝛿4)

Syscalls Refcounts Relation

(S0, S1) O0, O1 2

(S0, S2) O0 1

(S1, S2) O0 1

Refcount {Syscalls}

O0

(S0, S1)
(S0, S2)
(S1, S2)

O1 (S0, S1)

① Original records ② Refcount-syscall map

④ Syscall relation③

Figure 7: An example of refcount-based syscall relation calculation.

All records of refcount operations come from the same program execution.

Compared with the traditional code coverage-based method, our
new mechanism of calculating syscall relations focuses on refcount
operation and will help detect refcount-related UAF bugs. How-
ever, refcount operations are sparsely distributed among the large
kernel code base. Only using this relation as guidance may render
the fuzzer miss important changes in code coverage. Especially at
the beginning of kernel fuzzing, code coverage-based relation is
important to help boost kernel exploration. Therefore, instead of
completely dropping the previous relation, we merge it into our
new method. At the beginning of fuzzing, we assign a high priority
to the original coverage-based relation to quickly explore more
kernel code. As time goes on, we will allocate more weight to our
refcount-based relation such that the fuzzer can focus on testing
complex refcount operations. We adopt the following formula to
merge these two relations and calculate the overall relation.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = log2 (𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛) + 𝑘 ∗ log2 (𝑅𝑒 𝑓 𝑐𝑛𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛)

First, 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is the syscall relation proposed by the pop-
ular fuzzer Syzkaller. We introduce this relation and discuss its
calculation formula Equation 1 in §2.3. The high-level idea is set-
ting stronger relations for syscall pairs with same-type arguments
or used together in the corpus. With the guidance of 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛,
Syzbot has found thousands of kernel bugs, which demonstrates the
effectiveness of 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛. Therefore, we adopt it in our design.
Second, 𝑅𝑒 𝑓 𝑐𝑛𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is the refcount-based relation we propose.
It is the number of unique refcounts operated by a syscall pair, as
we discuss in §4.2.2. The assumption behind this design is that if
two syscalls operate on many unique refcounts, combining them
together may bring more diverse behaviors. For each executed pro-
gram, we record the triggered refcount operations, from which
we extract 𝑅𝑒 𝑓 𝑐𝑛𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛. Third, 𝑘 is increased every time after
testing a fixed number of test cases. At the beginning of fuzzing, 𝑘
has a small value, where 𝑆𝑦𝑧𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 will contribute more to the
𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛. Then, as we increase 𝑘 , 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 will be

influenced more by 𝑅𝑒 𝑓 𝑐𝑛𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, making the fuzzer focus more
on combining syscalls that operate on the same refcounts.

Our goal here is to gradually increase the weight of the refcount-
based relation, and therefore, any formula satisfying this goal
should work. We pick up this formula since it is neat and should be
adequate to demonstrate the benefit of the refcount-based relation.
We leave the exploration of advanced algorithms to future work.
Relation Synchronization. Due to the non-determinism nature
of fuzzing, kernel instances running in multiple VMs may learn
different relations. When a new relation is received from one VM,
other fuzzing instances should directly make use of it. CountDown
synchronizes refcount relations across all fuzzing instances. The
fuzzer process in each VM generates its own reports, consisting of
each syscall pair and the accessed refcount IDs. It utilizes a relation-
updating process in the host machine to periodically retrieve the
reports from every instance, merge them, and distribute the merged
relation to all instances. To merge syscall relations, CountDown
will count the unique IDs operated by each pair in all reports. As we
explain in §4.1.1, the refcount ID is calculated from the initialization
call stack of the refcount, and therefore, can be used across multiple
fuzzing instances that adopt the same kernel image.

4.3 Refcount-guided Program Mutation

CountDown makes full use of the new refcount-based relation to
guide the mutation of user-space programs. First, we leverage the
relations among syscalls to mutate programs towards triggering
unexpected refcount behaviors, like missing refcount increments.
Second, we use the refcount-syscall relation to help insert syscalls
that induce the kernel to release refcounted objects, access them
via dangling pointers, and finally trigger use-after-free bugs.

4.3.1 Diversifying Refcount Behaviors. To explore diverse refcount
behaviors, we utilize two strategies to combine syscalls that have
refcount-based relations. First, CountDown reuses the mutators
from previous fuzzing tools, like Syzkaller, to mutate existing pro-
grams. Since CountDown allocates higher weights to the refcount-
based relations, with our design the mutator will prefer to combine
syscalls that are strongly related regarding refcount operations.

Second, we also create a new mutator that combines refcount-
related syscalls more aggressively. 1 We select one program as
the target of mutation and run the program to collect all accessed
refcounts. We will update the refcount-syscall map if the execution
triggers new records (see §4.2.1). To mutate this program, we will
randomly select one refcount from all collected ones. Refcounts
accessed multiple times by this program will get higher probabili-
ties to be selected. 2 We search the refcount-syscall map to find
all syscalls that ever operate on this refcount and select one for
insertion. We set a higher priority to select related syscalls that are
not used in the current program. 3 We reuse Syzkaller’s logic
for inserting the selected syscalls into the program, which prefers
later positions. The probability of choosing a later position is in-
crementally increased by a fixed value compared to the probability
of choosing the previous position. It ensures that the chance of
selecting the last position is five times higher than that of selecting
the first position. This approach is widely used by Syzkaller and
other kernel fuzzers [10, 14, 19, 36]. We adopt this approach as the
syscalls at the beginning may work on the initialization of resources



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

and refcounts, so these positions are not the ideal insertion loca-
tions. CountDown will go through both old mutators and the new
one, and choose each mutator based on a predefined probability.
Refcount-based Input Prioritization. Other than traditional
code coverage, CountDown also takes new refcount behaviors
into consideration to identify promising programs. In particular,
CountDown will execute every newly generated program within
the instrumented kernel, and check whether the execution triggers
new code coverage or a new refcount operation, i.e., a previously
unseen (syscall,refcount) pair. If so, it will save the new program into
the input queue for further mutations. Meanwhile, it will update
the refcount-syscall map and the syscall relation to absorb the new
finding. In this process, we can synthesize programs with strongly
related syscalls and trigger more complex refcount behaviors.

4.3.2 Refcount Bug Exposure. Refcount errors are important root
causes of UAF bugs, but a triggered refcount error will not immedi-
ately result in a memory error. We need to trigger more operations
to make the kernel (1) release the refcounted object and (2) access
the object through dangling references. For example, in Figure 3,
syscall bind triggers the refcount bug, which renders the refcount
and the number of references inconsistent. However, if we stop
here, there will be no object released, and also no use-after-free
bugs. We should insert more refcount-related syscalls to the exe-
cuted program to reduce the gap between a refcount bug and a UAF
bug, such that kernel sanitizers like KASAN can capture it.

After executing a test case, CountDown checks the 4-tuple
records (𝑆 , 𝑂 , 𝛿 , 𝑉 ) of each syscall to identify refcount-decreasing
syscalls and refcount-accessing syscalls. We consider the final value
𝑉 of the refcount in the original program and the capability of
changing refcount 𝛿 from each syscall, and insert a proper number
of syscalls. Our goal is to reduce the refcount to 0, which will force
the memory manager to release the object. In particular, we insert
the syscall 𝑉 times if its 𝛿 < 0. After that, we will insert diverse
syscalls that ever access the refcount, hoping to trigger invalid
accesses through dangling references.
Example. To mutate the code in Figure 3, CountDown will first
check the refcount-based relation and insert multiple bind and
close syscalls since they ever access the same refcount. After that,
since close ever reduces the refcount and accesses the object, we
will insert more close syscalls. In this way, we can generate the
PoC program in Figure 2, and trigger the UAF bug.

5 IMPLEMENTATION

We implement CountDown based on the popular kernel fuzzing
tool, Syzkaller. Our implementation consists of 477 lines of C
code, 751 lines of Go code, and 190 lines of Python code. First,
CountDown changes 438 lines of C code in Linux kernel to im-
plement the instrumentation for recording refcount operations.
Second, we implement the refcount analyzer to calculate various
relations between refcounts and syscalls. Third, we update the old
program mutator and add a new one to realize our algorithms
for combining refcount-related syscalls to trigger refcount issues,
reduce refcounts and reach UAF bugs. Currently, CountDown sup-
ports testing three mainstream Linux kernels, v5.15, v6.1 and v6.6.

Our general design of CountDown should work on other kernel
versions with moderate efforts to adopt instrumentation.

Next, we discuss several key implementation details to the suc-
cess of refcount-guided fuzzing, including selective recording for
efficient execution, feature configuration to mitigate generic ref-
counts, and our support to multiple-core fuzzing.

5.1 Selective Recording for Efficiency

Since Linux developers extensively use refcount to manage heap
objects, the kernel will run much slower if we record all refcount
operations. We design three optimizations to reduce the overhead.

First, we observe that many refcount operations are not trig-
gered by fuzzer-generated programs. Based on our design in §4.1.2,
records of these operations will have the magic syscall NR and
cannot be used for relation reshaping. Therefore, we identify such
operations within refcount API functions and exclude them from
recording. Second, Linux kernel may execute in the process con-
text or the interrupt context. When an interrupt occurs during a
fuzzing-invoked task, the kernel will switch to the interrupt context
to handle the interrupt, but will not change the task. CountDown
will keep recording operations within the interrupt context, which
could be unrelated to fuzzing. We set CountDown to ignore all
operations within the interrupt context. Third, we avoid recording
any refcount operations introduced by our instrumentation, such
as memory allocation and call stack hashing. Before running our
code, we will temporarily set the current syscall NR in the task
structure to the magic value and restore the value after recording.

Fuzzer-invoked tasks may create asynchronous child tasks
within the kernel space, such as RCU and work thread. Record-
ing refcount operations within such asynchronous tasks will intro-
duce performance overhead since these tasks run much longer than
their parent tasks. Our tool supports recording refcount operations
within these asynchronous tasks, but we turn this option off by
default to improve the kernel performance. This choice is consistent
with the recent work that tracks operations on heap objects [14].

Other than selective recording, we design CountDown to avoid
unnecessary repetitions. In particular, Syzkaller repetitively exe-
cutes the same test case multiple times during fuzzing to filter out
unstable code coverage and confirm new bugs. Collecting refcount
operations in these repetitions brings in unnecessary overhead.
Therefore, we only enable the recording for the first execution of a
new test case, and disable recording for all following repetitions.

5.2 Generic Refcounts

CountDown leverages shared refcounts to learn relations among
syscalls. However, not all shared refcounts provide useful guidance.
During our study, we observe that particular refcounts are widely
used by all syscalls and thus, add relations to each syscall pair. For
instance, AppArmor is a security module designed for managing
the permissions of accessing resources [1]. It hooks many resource-
accessing functions from multiple subsystems, including file man-
agement, network access, and task scheduling. AppArmor creates
one refcount aa_label, and conducts refcount operations during
all syscalls. As a consequence, many irrelevant syscalls will operate
this generic refcount, leading to unreasonable relations. Our test
reveals that this single refcount contributes to more than 40% of all



CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 2: The p-values of all comparison experiments, where green
ones are statistically significant. CD-NC indicates CountDownw/o corpus.

Kernel Our tool Other tool UAF KASAN Cov.

v6.6 CountDown Syzkaller 0.032 0.008 6e-4

v6.1 CountDown Syzkaller 0.023 0.037 2e-4

v5.15 CountDown Syzkaller 0.003 0.039 2e-4

v6.2 CountDown MoonShine 0.004 0.011 2e-4

v6.2 CountDown Actor 7e-5 1e-4 2e-4

v6.2 CD-NC MoonShine 0.413 0.146 2e-4

v6.2 CD-NC Actor 4e-4 1e-4 2e-4

syscall relations. To maintain the rationality of the refcount-based
relations, we should ignore these commonly used generic refcounts.
We implement a relation checker to count how many relations
each refcount contributes to. If one refcount contributes to a lot of
relations, we will investigate the case and ignore the corresponding
relations. AppArmor is the only special case we find currently, but
we will keep detecting generic refcounts with our relation checker
to avoid similar issues in other kernel configurations.

5.3 Multiprocess Support

CountDown inherits the multiprocess feature from Syzkaller
to support large-scale kernel testing. In each VM, CountDown
runs 𝑀 fuzzing processes, each of which executes one test case.
Each process runs multiple threads in parallel, where each thread
executes one syscall. Following the definition in Syzkaller, one
test case can invoke up to 40 syscalls. When the program has more
syscalls than threads, one thread may execute several syscalls se-
quentially, but different syscalls may not finish in the same order
as they start. To store the refcount operations in parallel, we create
40∗𝑀 separate memory regions for all syscalls from all fuzzing pro-
cesses running in the same VM. Then, inside the logging functions,
we use the fuzzing process ID and the syscall number to identify
the memory regions allocated for recording. After one program
completes all its syscalls, we utilize the helper syscall after_sys
to copy the in-kernel records to the user-space fuzzer, where the
latter will analyze the trace and calculate various relations.

6 EVALUATION

We evaluate CountDown on main stream Linux kernel versions to
understand its effectiveness for finding bugs, especially use-after-
free issues. Our evaluation aims to answer the following questions.
Q1. Can CountDown detect more use-after-free bugs?
Q2. What is the contribution of each component of CountDown?
Q3. Can CountDown effectively learn refcount relations?
Q4. What is the instrumentation overhead of CountDown?
Experiment Setup. We conduct our experiments on a 64-bit
Ubuntu 20.04 server with 56-core Intel(R) Xeon(R) Gold CPU (112
threads) and 500 GB memory. We compile the instrumented ker-
nel and the original kernel with the same configuration. Since
CountDown is built on top of Syzkaller, all experiments adopt
the same setting, i.e., running 16 virtual machines in parallel, where
each machine utilizes 2 cores and 8 GB memory and creates 4
fuzzing processes. To mitigate the impact of fuzzing randomness,

Table 3: Bug-finding results, averaged from 11 runs of 72-hour fuzzing.

Kernel Use-after-free bugs All KASAN reports

Version CountDown/Syzkaller CountDown/Syzkaller

Linux 5.11 4.4/2.3 (91.3%↑) 11.5/9.4 (22.3%↑)
Linux 6.1 4.4/2.8 (57.1%↑) 10.4/8.0 (30.0%↑)
Linux 6.6 3.9/2.6 (50.0%↑) 6.3/4.3 (46.5%↑)

Average 66.1%↑ 32.9%↑

we run each fuzzing instance for 72 hours, repeat each experiment
for 11 times2 and report the average result, following the suggestion
in the recent work [35]. Our setting allocates more CPU time to test
each tool than previous works. In particular, each fuzzer is tested
for 3 day * 16 VM * 2 CPU/VM = 96 CPU*days. As a comparison,
Actor, Healer and MoonShine allocate 8, 2 and 4 cores to test
each fuzzer for 24 hours, resulting in 8, 2, 4 CPU*days, respectively.
Fuzzing Kernel Versions and Corpus. We choose three popular
kernel versions for testing, including long-term versions v5.15 and
v6.1, and the mainline version v6.6. Kernel maintainers are actively
fixing bugs in these versions due to the potential threats to real-
world devices. After the long-term large-scale kernel fuzzing, the
security community has released several high-quality corpus con-
sisting of a large number of test cases. These user-space programs
help fuzzers go through kernel codes that have been extensively
tested and quickly move on to under-explored ones. Without spe-
cial instructions, we conduct all experiments with the initial corpus
indicated in the Syzkaller Github repository [41].

6.1 Bug Finding

6.1.1 Comparison with Syzkaller. We spend most evaluation ef-
fort on comparing CountDown with Syzkaller. First, our tool is
built on top of Syzkaller, and therefore, any difference must stem
from our refcount-related guidance. Second, both tools support
three kernel versions and we can compare them comprehensively.

Table 3 shows the statistics of detected bugs averaged from 11
runs, while Figure 8 provides the bug-discovery progress over 72
hours. Overall, CountDown outperforms Syzkaller in finding
UAF bugs and general memory errors. On different kernel ver-
sions, CountDown can detect 50.0% to 91.3% more UAF bugs than
Syzkaller (66.1% on average), and reports 22.3% to 46.5% more
general memory errors (32.9% on average). All the p-values are
smaller than 0.05, as reported in Table 2. Such results demonstrate
the advantage of our new refcount-related guidance for finding
temporal and spatial memory errors.

The bug-discovery progress in Figure 8 reveals that at the begin-
ning of fuzzing, CountDown performs similarly with Syzkaller,
but gradually outperforms the latter as time goes on. The per-
formance gap gets larger monotonically and there is no sign of
convergence after the 72-hour evaluation. This result is consistent
with our design in §4.2.2. In particular, at the initial stage of fuzzing
we set a high priority to the original syscall relation to help explore
more code paths. CountDown focuses on learning refcount-based
relations and thus achieves similar performance as Syzkaller. Af-
ter that, we assign a higher priority to the refcount-based relation.
2We notice that several p-values are slightly greater than 0.05 with 10 repetitions, so
we run it one more time to obtain reliable results.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Av
er

ag
e 

Bu
g 

Nu
m

be
r

ALL - CountDown
ALL - Syzkaller
UAF - CountDown
UAF - Syzkaller

(a) experiments on v5.15

0 10 20 30 40 50 60 70
0

2

4

6

8

10

Av
er

ag
e 

Bu
g 

Nu
m

be
r

ALL - CountDown
ALL - Syzkaller
UAF - CountDown
UAF - Syzkaller

(b) experiments on v6.1

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

Av
er

ag
e 

Bu
g 

Nu
m

be
r

ALL - CountDown
ALL - Syzkaller
UAF - CountDown
UAF - Syzkaller

(c) experiments on v6.6

Figure 8: Bugs detected by CountDown and Syzkaller on three kernel versions. All numbers are average from 11 runs of 72-hour experiments. All the
comparisons are statistically significant (p-values < 0.05).

CountDown will generate user-space programs that consist of
more refcount-related syscalls, and trigger more complex temporal
memory bugs.We find similar patterns in previous relation-learning
fuzzers such as Healer [37] which exhibit performance comparable
to Syzkaller until they accumulate sufficient information.

Although our major design goal is to effectively detect UAF
bugs, during the evaluation CountDown also triggers more spatial
memory bugs, like NULL pointer deference, out-of-bound access,
and even direct access to user-space memory. Our understanding
is that since the refcount operations are always associated with
reference creation, destruction and object access, combining diverse
refcount behaviors will also trigger complex memory operations,
which leads to higher probabilities to trigger spatial memory bugs.

6.1.2 Comparison with Advanced Fuzzers. Next, we try to compare
CountDown with state-of-the-art advanced kernel fuzzers, such
as MoonShine, Healer and Actor. Since these tools have different
settings and requirements on seed corpus and kernel versions, we
try to identify the best configuration that works for every tool. (1)
MoonShine designs a private format (i.e., publicly unknown) to
record kernel executions, and distills execution traces only in this
format to produce a minimal set of high-quality programs. We have
to reuse the corpus released by the developers to test MoonShine.
(2) Healer learns syscall relations through dynamic analysis. How-
ever, the publicly released version lacks essential components [4],
and can hardly find any bugs, as shown in the previous work [14].
Therefore, we exclude it from the comparison. (3) Actor is the most
recent work for finding kernel memory bugs. Actor releases its
instrumentation code for two particular kernel versions, v5.17 and
v6.2-rc5. we choose the recent version v6.2-rc5 for testing all tools.
We also follow the suggestion from Actor developers to patch the
config file before compiling the kernel [13]. In summary, we com-
pare the performance of CountDown with two advanced kernel
fuzzers, MoonShine and Actor, on testing kernel v6.2-rc5. We test
Actor without any corpus since VMs fuzzed by Actor will have
frequent out-of-memory (OOM) issues with a large corpus (con-
firmed by Actor authors). We feed MoonShine its own released
corpus, following the same practice in previous works [14, 37]. We
test CountDown with two settings, one without any corpus (for
comparison with Actor) and another with a corpus from Syzbot.

0 10 20 30 40 50 60 70
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

Bu
g 

Nu
m

be
r

ALL - CountDown
ALL - CountDown w/o corpus
ALL - Moonshine
ALL - Actor

UAF - CountDown
UAF - CountDown w/o corpus
UAF - Moonshine
UAF - Actor

Figure 9: Bugs detected by CountDown and other advanced tools.

Figure 9 shows the results. With the seed corpus from Syzbot,
CountDown detects 6.5 UAF bugs (average number across 11 72-
hour runs) and 16.9 general memory errors. Without any corpus, it
still reports 5.2 UAF bugs and 14.7 memory errors. To avoid getting
extra benefit from the high-quality corpus. we use the result of the
non-corpus CountDown to compare with others.

With its own corpus, MoonShine reports 3.8 UAF bugs and 11.8
memory errors, respectively. Our non-corpus CountDown outper-
forms MoonShine by 36.8% for UAF bugs and 24.6% for general
errors. Under this setting, CountDown achieves similar perfor-
mance as MoonShine within the first 60 hours. After CountDown
learns sufficient refcount-based relations, it gradually outperforms
MoonShine. We notice that the p-value keeps reducing along this
process. Although it is greater than 0.05 at 72 hours (shown in
Table 2), considering the stronger growth trend of our method. we
believe our strength will be more significant in longer fuzzing. Con-
sidering the importance of high-quality corpus to kernel fuzzing, the
extra bugs found by non-corpus CountDown suggest the strong
advantage of the refcount-based feedback. Besides, we suggest to



CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 10 20 30 40 50 60 70
0K

50K

100K

150K

200K

250K

300K

350K

Co
ve

ra
ge

Coverage - CountDown
Coverage - Syzkaller

(a) experiments on v5.15

0 10 20 30 40 50 60 70
0K

50K

100K

150K

200K

250K

300K

350K

Co
ve

ra
ge

Coverage - CountDown
Coverage - Syzkaller

(b) experiments on v6.1

0 10 20 30 40 50 60 70
0K

50K

100K

150K

200K

250K

300K

350K

Co
ve

ra
ge

Coverage - CountDown
Coverage - Syzkaller

(c) experiments on v6.6

Figure 10: Coverage triggered by CountDown and Syzkaller on three kernel versions. All numbers are average from 11 runs of 72-hour experiments.
All the comparisons are statistically significant (p-values < 0.001).

Table 4: New kernel bugs detected by CountDown

Bug Ver Status

KASAN: slab-use-after-free in nfc_alloc_send_skb v6.3 Fixed
UBSAN: shift-out-of-bounds in net/nfc/nci/core.c v6.2 Fixed
KASAN: slab-use-after-free in __lock_acquire v6.6 Confirmed
KASAN: use-after-free in gfs2_evict_inode v4.19 Reported
KASAN: slab-out-of-bounds in sock_sendmsg v6.1 Reported
KASAN: slab-out-of-bounds in __crypto_xor v4.19 Reported
KASAN: slab-out-of-bounds in ext4_search_dir v4.19 Reported
KASAN: slab-out-of-bounds in xfs_iext_get_extent v4.19 Reported
KASAN: null-ptr-deref in mutex_lock v4.19 Reported

equip CountDown with high-quality seed corpus, like Syzbot cor-
pus, to maximize its performance.

Our non-corpus CountDown detects 2.47x more UAF bugs and
1.53x more memory errors than Actor with statistical significance
(p-values in Table 2), which significantly outperforms this recent
work. To ensure the reliability of Actor result, we have discussed
with Actor developers several times. We adopt a proper setting
confirmed by Actor developers and also test the latest Actor with
its newest stability patch. With the help of Actor developers, we
collectively discover that developing tools based on different ver-
sions of Syzkaller could be the root cause of unexpected Actor
performance. Syzkaller developers have made several updates
in recent years which significantly enhance the performance of
Syzkaller. Actor was developed on top of an older version of
Syzkaller (June 2022), while other fuzzers in this experiment get
benefited from the newer Syzkaller (March 2023). Actor develop-
ers share their findings that MoonShine based on a newer version
of Syzkaller performs obviously better than Actor in their latest
tests, which is consistent with our findings. Furthermore, the results
of the comparison to cutting-edge tools demonstrate that our tool
is one of the best kernel fuzzers currently available, by combining
advanced fuzzing techniques with the novel refcount feedback.
Static Refcount-bug Detectors. Researchers propose several
static analysis techniques to detect refcount bugs from Linux ker-
nel [27, 40]. Since these tools have not publicly released the source
code, we cannot compare our tool with them. We will discuss the
differences between static detectors and dynamic fuzzers in §7.3.

6.1.3 New Bugs Found by CountDown. Table 4 shows the new
bugs detected by CountDown, including three UAF bugs, five
out-of-bound access and one NULL pointer dereference. We have
reported all of our findings to Linux developers, together with
corresponding reproducers and kernel configurations. At the time
of paper writing, Linux developers confirmed three bugs, fixed two
of them, and are working on patching another one. We are still
waiting for developers’ responses to other reports. Among three
new UAF bugs, two are refcount-related, i.e., the freed object is
managed by the refcount mechanism. These results show that with
the refcount-related guidance, CountDown can detect previously
unknown refcount-related temporal bugs from Linux kernel.
Bug Case Study. slab-use-after-free in nfc_alloc_send_skb
is one new refcount-related UAF bug detected by CountDown.
In function nfc_llcp_recv_connect, developers create a new ref-
erence to object nfc_dev and store the reference in a sock object.
Although nfc_dev is managed by the refcount mechanism, develop-
ers forget to increase the refcount for this new reference, making
the refcount inconsistent with the number of references. When
kernel closes the device, it decreases the refcount (non-zero due to
other refcount operations) of nfc_dev to zero, making the object
released. Later, the dangling reference stored in sock is used for
sending nfc_llcp messages, which triggers the UAF bug. Since the
root cause of this UAF bug is an improper use of refcount, devel-
opers increment the refcount when creating the new reference.
Within the same patch, developers also complement another re-
fcount increment for another reference creation within function
nfc_llcp_register_device, where a reference of nfc_dev is stored
in an nfc_llcp_local object. An interesting observation is that five
months after our report to the Linux community, Syzbot indepen-
dently discovered and reported this vulnerability. Considering the
large amount of resources used by Syzbot, we attribute our early
discovery to the refcount-based guidance.

6.2 Code Coverage

Other than bug number, we also collect the code coverage triggered
by different kernel fuzzers. Figure 10 shows the comparison between
CountDown and Syzkaller. The coverage of CountDown is
4.3%, 3.9% and 1.8% lower than Syzkaller for kernel v5.15, v6.1
and v6.6, respectively. As shown in Table 2, all p-values are smaller



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

0 10 20 30 40 50 60 70
0K

50K

100K

150K

200K

250K

300K

350K

Co
ve

ra
ge

Coverage - CountDown
Coverage - CountDown w/o corpus
Coverage - Moonshine
Coverage - Actor

Figure 11: Coverage triggered by CountDown and advanced tools.

Comparisons of any two tools are statistically significant (p-values < 0.001).

than 0.01. Since our tool focuses on testing refcount-related logic,
it may ignore new coverage of non-refcount operations and thus,
achieve lower coverage. This behavior is consistent with recent
kernel fuzzers [14, 19, 34] that focus on particular operations in
kernel. For example, SegFuzz [19] aims to detect concurrency bugs
by focusing on exploring thread interleavings, and triggers 3.2%
less coverage than Syzkaller. The most recent work Actor [14],
focuses on heap memory operations, and also reports less coverage.
Although these tools cannot trigger the highest coverage, they find
new bugs missed by Syzkaller. Similarly, CountDown reports
extra UAF and KASAN reports (shown in Figure 9), indicating its
unique efficacy on detecting such severe bugs.

Figure 11 shows the comparison among state-of-the-art tools.
CountDown with Syzbot corpus triggers significantly more cov-
erage than the other tools, indicating the necessity of using and
supporting high-quality corpus. MoonShine (with its high-quality
corpus) achieves higher coverage than other settings: CountDown
w/o corpus (called CD-NC) and Actor. In detail, without corpus,
CD-NC and Actor trigger 5.5% and 21.8% less coverage than Moon-
Shine, separately. For the comparison between our tool with other
advanced tools, all the p-values are smaller than 0.01, as shown in
Table 2. Considering the coverage brought by MoonShine’s high-
quality corpus, it is acceptable for CD-NC to trigger less coverage,
similar to the case where CountDown achieves much more cover-
age than other tools with Syzbot corpus. Further, as we discuss in
§6.1.2, Actor was developed on top of an old version of Syzkaller,
and cannot get benefited from Syzkaller’s recent improvement.

6.3 Contribution of Each Component

CountDown takes three steps to mutate a user-space program,
specifically, (1) inserting refcount-related syscalls to trigger ref-
count bugs, (2) appending refcount-decreasing syscalls to reduce re-
fcount to zero, and (3) adding refcount-accessing syscalls to activate
invalid uses. To understand the contribution of each step towards
triggering bugs, we disable each component one by one to get three
new settings, i.e., -refcntmutate that disables refcount-guided muta-
tor, -dupdec that does not insert refcount-decreasing syscalls, and
-dupuse that does not insert refcount-accessing syscalls. We test
each setting on Linux 6.6 for 72 hours and repeat each setting for 10

0 12 24 36 48 60 72 84 960
1
2
3
4
5
6
7
8

Av
er

ag
e 

Bu
g 

Nu
m

be
r

ALL - CountDown
ALL - Syzkaller
ALL - CountDown-dupdec
ALL - CountDown-dupuse
ALL - CountDown-refcntmutate

0 12 24 36 48 60 72 84 96

UAF - CountDown
UAF - Syzkaller
UAF - CountDown-dupdec
UAF - CountDown-dupuse
UAF - CountDown-refcntmutate

Figure 12: Ablation Study in Linux v6.6

times. Further, we find the differences of CountDown, -dupuse and
-dupuse, are not significant at the end of 72-hour fuzzing. Therefore,
we extend the experiments of these three settings to 92 hours for
reliable results. Figure 12 shows the average results.

The most important component is our new refcount-guided
mutator, where disabling it (i.e., -refcntmutate in the figure) makes
our tool only slightly better than Syzkaller. In particular, the
UAF-bug detection capability of CountDown decreases by 22.0%
without this refcount mutator. For an existing user-space program
𝑃 that operates a refcount 𝑂 , the refcount-guided mutator will find
another syscall 𝑆 that ever accesses𝑂 in other programs, and insert
𝑆 to 𝑃 . Therefore, this mutator can actively generate programs
accessing refcounts by different syscall pairs, and thus provides
strong contributions to the refcount-guided fuzzing.

For another two components that add refcount-decreasing and
refcount-accessing syscalls, the result shows that they help trig-
ger more UAF bugs, especially in the long-run experiment, but
trigger similar number of KASAN reports. In the last 24-hour
fuzzing, CountDown can still find 0.9 UAF bugs, while -dupdec
and -dupuse merely detect 0.5 and 0.7 bugs, respectively. This is
expected, these two components are designed for transforming the
refcount bugs into UAF bugs by inserting related syscalls. Mean-
while, these syscalls are not strongly related to other bugs such
as out-of-bound access, and adding such syscalls could have nega-
tive impacts to trigger other bugs. Therefore, the total number of
KASAN reports are similar to that of CountDown.

6.4 Refcount-based Relation Learning

We investigate the refcount-based relations constructed by our
CountDown and compare them with those built by Syzkaller.
Quantitative Comparison. Figure 13 compares the relations con-
structed by CountDown and Syzkaller after 72-hour fuzzing. On
kernels v5.15, v6.1, and v6.6, CountDown identifies 337196, 344591
and 337227 pairs of related syscalls, including 196756, 200736, and
183158 pairs that ever access shared refcounts. With the same set-
ting, Syzkaller constructs 188218, 191441, and 196536 relations for
different kernel versions, more than 80% of which are also received
by CountDown. This result shows that CountDown can capture
more sensitive progress on kernel state exploration, and thus can
detect more complex bugs. On the other hand, Syzlang defines



CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

173271163956

Syzkaller CountDown

32580

(a) v5.15

186371158220

Syzkaller CountDown

33221

(b) v6.1

180548156648

Syzkaller CountDown

31570

(c) v6.6

Figure 13: Relations learned by CountDown and Syzkaller on three
kernel versions. CountDown learns more unique relations than Syzkaller and
more than 80% relations learned by Syzkaller are learned by CountDown.

143401 91573
47485

102401

50228 30864

181926

Linux v6.1 Linux v5.15

Linux v6.6

Figure 14: Syscall relations

learned by CountDown from
different kernel versions.

30629
30368

20711

9079

675

927

1249

Refcnt Inc Refcnt Dec

Refcnt Keep

Figure 15: Refcount operations

triggered in Linux v6.6 update
refcount unidimensionally usually.

more than 4,300 syscalls, which form a huge syscall-relation space
consisting of more than 19 million possible pairs. CountDown
only identifies less than 2% of all possible combinations, which
effectively highlights a small proportion of valuable syscall pairs
from the enormous space. Moreover, for three kernel versions,
CountDown keeps identifying more previously unseen syscall
relations. Therefore, the refcount-based guidance will enhance the
bug detection capability for long-term fuzzing settings.
Stability of Learned Relation. Since Linux developers make
substantial changes to each kernel version, we are curious about
the stability and reusability of syscall relations across different
versions. Figure 14 shows the overlaps among syscall relations
learned from different kernel versions. After each 72-hour fuzzing,
at least 66.1% of the refcount relations learned from one version are
also learned independently from another version, and at least 43.0%
of the relations are captured by all three different versions. Since
CountDown still discovers new syscall relations at the end of
our experiment, the percentage of shared relations across different
versions could be even higher. These results indicate that refcount-
based relation is a stable method for combining different syscalls.
Validity of Refcount-based Relation. We inspect 52 fixed
refcount-related UAF bugs to understand the value of our new
refcount-based relation. For each bug, we find its reproducer from
the bug report. Then, from all 495 pairs of syscalls within the re-
producers, we find 109 (22.0%) syscall pairs that do not exist in
seed corpus. We focus on such syscall pairs since fuzzers have to
generate them to trigger UAF bugs. For each pair of syscalls, we
find its relation value from our relation table and the value from
Syzkaller’s relation table. A stronger relation indicates a higher
possibility to produce such syscall combinations. For each pair, we
calculate the ratio of refcount-based relation to Syzkaller relation,
which indicates the probability improvement for generating this
pair. We find CountDown relation is 51.3% (geometric mean) more
stronger than Syzkaller relation, resulting in higher chances of
generating these crucial pairs to trigger analyzed UAF bugs.
Stability of Refcount Operations. To trigger UAF bugs, we in-
sert refcount-decreasing syscalls to reduce refcount to 0 and add
refcount-accessing syscalls to use dangling pointers. Both actions re-
quire one syscall to perform stable operations on the same refcount
across different executions. To measure the stability of refcount op-
erations, we group these operations based on the 𝛿 value. Figure 15
shows that for one particular refcount, most syscalls only engage in

either an increment (refcnt-inc operation), decrement (refcnt-dec
operation), or no update (refcnt-keep operation). Among 87 thou-
sand unique refcount-syscall pairs, only 2.3% of them both increase
and decrease the refcount in different runs. Such unidimensional
behavior aligns with our design that repeating specific syscalls in
user-space programs can make kernel execution closer to UAF bugs.

6.5 Instrumentation Overhead

CountDown instruments all refcount API functions in Linux ker-
nel to collect refcount operations. Since these functions are invoked
frequently within kernel, our instrumentation may bring in heavy
performance overhead. To accelerate the kernel fuzzing, we opti-
mize CountDown by selectively executing the instrumented code
only when necessary (see §5.1). We use the speed of test case execu-
tion during fuzzing to measure the overhead. In detail, the average
executing speed overhead is 5.9%, 14.6%, and 14.0% for kernel v5.15,
v6.1, and v6.6, respectively. Such overhead is acceptable considering
the prevalent refcount usages in kernel.

7 RELATEDWORK

We have extensively discussed and compared with the most related
kernel fuzzers in previous sections. Next, we will examine other
works, focusing on syscall grammar inference, kernel fuzzers for
concurrency bugs, and static analyzers for detecting refcount issues.

7.1 Syscall Grammar Inference

Due to extensive checks on syscall arguments, invalid syscalls trig-
ger only shallow error-handling functions, and can hardly reach
deep bugs. To address this problem, kernel fuzzers adopt prede-
fined rules of syscall parameters and return values to generate valid
syscalls. Syzkaller utilizes Syzlang [39] to define syscall input and
output, like data types. For instance, for syscall socket, Syzlang de-
fines concrete values AF_INET and AF_INET6 for parameter family
to indicate ipv4 and ipv6 protocols, and specifies a sock-type return
value. This value can be used by other syscalls that accept sock-type
arguments, like bind and close. However, Syzlang is implemented
manually based on expert domain knowledge, and requires a lot
of human efforts to maintain it. Several works [10, 12, 16, 38] try
to generate Syzlang descriptions automatically. Difuze [12] and
SyzDescribe [16] perform static analysis on kernel code to re-
cover syscall interfaces. KSG dynamically searches the device list
and analyzes the related kernel functions to infer calling conven-
tions. Syzgen++ [10] builds dependencies by checking insertion



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shuangpeng Bai, Zhechang Zhang, and Hong Hu

and lookup operations on the same kernel data container. Recent
work FuzzNG [9] proposes a grammar-free solution that generates
required data on demand, especially for file contents and pointers.

7.2 Kernel Fuzzers for Concurrency Bugs

Kernel concurrency fuzzers focus on exploring different execution
orders across multiple threads and have uncovered many concur-
rency bugs, including a few UAF bugs. RAZZER [18] combines
static analysis and two-stage fuzzing to find concurrency bugs. It
first locates instructions that may concurrently access the same
memory location, and then adopts single-thread fuzzing to generate
programs reaching race points. At the end, it uses multi-threads
fuzzing to find thread interleavings that trigger concurrency bugs.
DDRace [48] adopts directed grey-box fuzzing to trigger kernel con-
currency UAF bugs. It first utilizes lightweight dynamic analysis to
identify instructions that use or free the same object. Then, it uses
static analysis to recognize race pairs that may simultaneously re-
lease and use the object. To reach each potential race pair, DDRace
leverages UAF-bug constraints and unique pairs of read/write in-
structions to guide the test case generation. These works mainly
focus on detecting concurrency bugs, and UAF bugs are merely side
effects. CountDown aims to identify UAF bugs caused by refcount
issues. Therefore, we design a newmechanism that utilizes refcount
operations to calculate syscall relations and prioritize test cases.

7.3 Static Analyzers to Detect Refcount Issues

Researchers propose static analysis techniques to detect refcount
issues from large systems such as Linux kernel. Pungi [24] assumes
that refcount changes and reference operations should match along
a complete path and treats all violations as refcount bugs. RID [29]
requires that different code paths within the same function have the
same refcount operation. CID [40] advances the static analysis in
two ways, checking refcount consistency across callers and callees,
and considering functions with deviated refcount operations as sus-
picious. Recent work LinKRID [27] requires refcount changes and
reference operations to be consistent within a function. Although
each static analyzer helps identify a set of refcount issues (some
leading to UAF bugs), these techniques suffer from two limitations.
First, kernel code commonly splits refcount changes and reference
operations into different functions. To detect refcount issues, we
need to conduct heavy inter-procedural data-flow analysis, which
significantly limits the scalability. Many analyzers only focus on
detecting bugs from a subsystem. Second, without concrete exe-
cution context, static analysis has to over-estimate kernel states,
leading to many false positives. For example, LinKRID produces
around 40% false positives, which brings a heavy burden to kernel
developers to distinguish true bugs from false alarms.

CountDown avoids these limitations since it uses concrete ex-
ecutions to detect true-positive bugs at runtime. Although these
two techniques are orthogonal to each other, it is possible to com-
bine them strategically. For example, we can use static analyzers to
identify suspicious buggy locations, and adopt the refcount-based
relation from CountDown to guide a directed fuzzing to confirm
bugs. We plan to explore this direction in future work.

8 CONCLUSION

In this paper, we propose CountDown, a novel kernel fuzzer for
finding refcount-related use-after-free bugs. CountDown reshapes
syscall relations through shared refcounts among different syscalls,
generates user-space programs based on refcount-based relations,
and injects refcount-decreasing and refcount-accessing syscalls to
free objects and use dangling pointers. We test CountDown on
three Linux kernels, and it produces 66.1% more UAF bugs and
32.9% more KASAN reports than previous tools. CountDown has
found nine new kernel bugs with two confirmed.

ACKNOWLEDGMENT

We thank the anonymous reviewers, especially our shepherd, for
their insightful comments and valuable feedback. This research was
supported by National Science Foundation (NSF) under grants CNS-
2247652 and CNS-2339848. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF.

REFERENCES

[1] AppArmor: Linux Kernel Security Module. https://apparmor.net/.
[2] Linux Kernel DCCP Use-after-free Privilege Escalation. https:

//support.alertlogic.com/hc/en-us/articles/115003048363-Linux-Kernel-
DCCP-Use-after-free-Privilege-Escalation, 2017.

[3] net/nfc: Fix use-after-free llcp_sock_bind/connect. https://git.kernel.org/pub/s
cm/linux/kernel/git/netdev/net.git/commit/?id=c61760e6940d, May 2021.

[4] Reproducing Evaluation Part of Paper Healer. https://github.com/SunHao-
0/healer/issues/37, Oct. 2021.

[5] Linux Kernel Use-after-free in Netfilter nf_tables When Processing Batch Re-
quests can be Abused to Perform Arbitrary Reads and Writes in Kernel Memory.
https://seclists.org/oss-sec/2023/q2/133, May 2023.

[6] The Kernel Memory Sanitizer (KMSAN). https://docs.kernel.org/dev-tools/kmsa
n.html, 2023.

[7] Researchers Uncover New Linux Kernel ’StackRot’ Privilege Escalation Vulner-
ability. https://thehackernews.com/2023/07/researchers-uncover-new-linux-
kernel.html, July 2023.

[8] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based Greybox Fuzzing
As Markov Chain. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), pages 1032–1043, Vienna, Austria, Oct. 2016.

[9] A. Bulekov, B. Das, S. Hajnoczi, and M. Egele. No Grammar, No Problem: Towards
Fuzzing the Linux Kernel without System-Call Descriptions. In Proceedings of
the 30th Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb.–Mar. 2023.

[10] W. Chen, Y. Hao, Z. Zhang, X. Zou, D. Kirat, S. Mishra, D. Schales, J. Jang, and
Z. Qian. Syzgen++: Dependency Inference for Augmenting Kernel Driver Fuzzing.
In Proceedings of the 45th IEEE Symposium on Security and Privacy (IEEE S&P),
San Francisco, CA, May 2024.

[11] G. E. Collins. A Method for Overlapping and Erasure of Lists. Communications
of the ACM, 3(12):655–657, Dec. 1960. ISSN 0001-0782.

[12] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna.
DIFUZE: Interface Aware Fuzzing for Kernel Drivers. In Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS), pages 2123–
2138, Dallas, TX, Oct.–Nov. 2017.

[13] M. Fleischer. Actor, 2023. https://github.com/ucsb-seclab/actor.
[14] M. Fleischer, D. Das, P. Bose, W. Bai, K. Lu, M. Payer, C. Kruegel, and G. Vigna.

ACTOR: Action-Guided Kernel Fuzzing. In Proceedings of the 32nd USENIX
Security Symposium (USENIX Security), pages 5003–5020, Anaheim, CA, USA,
Aug. 2023.

[15] Google. Honggfuzz. https://google.github.io/honggfuzz/.
[16] Y. Hao, G. Li, X. Zou, W. Chen, S. Zhu, Z. Qian, and A. A. Sani. SyzDescribe: Prin-

cipled, Automated, Static Generation of Syscall Descriptions for Kernel Drivers.
In Proceedings of the 44th IEEE Symposium on Security and Privacy (IEEE S&P),
pages 3262–3278, San Francisco, CA, May 2023.

[17] L. He, H. Hu, P. Su, Y. Cai, and Z. Liang. FreeWill: Automatically Diagnosing Use-
after-free Bugs via Reference Miscounting Detection on Binaries. In Proceedings
of the 31st USENIX Security Symposium (USENIX Security), pages 2497–2512,
Boston, MA, USA, Aug. 2022.

[18] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer: Finding Kernel
Race Bugs Through Fuzzing. In Proceedings of the 40th IEEE Symposium on
Security and Privacy (IEEE S&P), pages 754–768, San Francisco, CA, May 2019.

https://apparmor.net/
https://support.alertlogic.com/hc/en-us/articles/115003048363-Linux-Kernel-DCCP-Use-after-free-Privilege-Escalation
https://support.alertlogic.com/hc/en-us/articles/115003048363-Linux-Kernel-DCCP-Use-after-free-Privilege-Escalation
https://support.alertlogic.com/hc/en-us/articles/115003048363-Linux-Kernel-DCCP-Use-after-free-Privilege-Escalation
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=c61760e6940d
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=c61760e6940d
https://github.com/SunHao-0/healer/issues/37
https://github.com/SunHao-0/healer/issues/37
https://seclists.org/oss-sec/2023/q2/133
https://docs.kernel.org/dev-tools/kmsan.html
https://docs.kernel.org/dev-tools/kmsan.html
https://thehackernews.com/2023/07/researchers-uncover-new-linux-kernel.html
https://thehackernews.com/2023/07/researchers-uncover-new-linux-kernel.html
https://github.com/ucsb-seclab/actor
https://google.github.io/honggfuzz/


CountDown: Refcount-guided Fuzzing for Exposing Temporal Memory Errors in Linux Kernel CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[19] D. R. Jeong, B. Lee, I. Shin, and Y. Kwon. Segfuzz: Segmentizing thread interleaving
to discover kernel concurrency bugs through fuzzing. In Proceedings of the
44th IEEE Symposium on Security and Privacy (IEEE S&P), pages 2104–2121, San
Francisco, CA, May 2023.

[20] Kernal Source Code. Kernel Refcount API. https://github.com/torvalds/linux/bl
ob/master/include/linux/refcount.h. (visited in May 2023).

[21] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee. HFL: Hybrid Fuzzing
on the Linux Kernel. In Proceedings of the 27th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2020.

[22] A. Konovalov and D. Vyukov. Kernel Address Sanitizer (KASAN): A Fast Memory
Error Detector for the Linux Kernel. LinuxCon North America, 2015.

[23] G. Kroah-Hartman. kobjects and krefs. In Linux Symposium, page 295, 2004.
[24] S. Li and G. Tan. Finding Reference-counting Errors in Python/C Programs with

Affine Analysis. In Proceedings of the 28th Annual European Conference on Object-
Oriented Programming (ECOOP), pages 80–104, Uppsala, Sweden, July–Aug. 2014.

[25] Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and K. Li. GREBE: Unveiling
Exploitation Potential for Linux Kernel Bugs. In Proceedings of the 43rd IEEE
Symposium on Security and Privacy (IEEE S&P), pages 2078–2095, San Francisco,
CA, May 2022.

[26] Z. Lin, Y. Wu, and X. Xing. DirtyCred: Escalating Privilege in Linux Kernel.
In Proceedings of the 29th ACM Conference on Computer and Communications
Security (CCS), pages 1963–1976, Los Angeles, CA, USA, Nov. 2022.

[27] J. Liu, L. Yi, W. Chen, C. Song, Z. Qian, and Q. Yi. LinKRID: Vetting Imbalance
Reference Counting in Linux kernel with Symbolic Execution. In Proceedings of
the 31st USENIX Security Symposium (USENIX Security), pages 125–142, Boston,
MA, USA, Aug. 2022.

[28] LLVM. LibFuzzer - A Library for Coverage-guided Fuzz Testing. http://llvm.org
/docs/LibFuzzer.html.

[29] J. Mao, Y. Chen, Q. Xiao, and Y. Shi. RID: Finding Reference Count Bugs with
Inconsistent Path Pair Checking. In Proceedings of the 21st ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Atlanta, GA, Apr. 2016.

[30] Microsoft. Rules for Managing Reference Counts. https://docs.microsoft.com/e
n/windows/desktop/com/rules-for-managing-reference-counts, Aug. 2020.

[31] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability of
UNIX Utilities. Communications of the ACM, 33(12):32–44, Dec. 1990.

[32] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimizing OS Fuzzer Seed Selection
with Trace Distillation. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security), Baltimore, MD, Aug. 2018.

[33] PaX Team. PaX Address Space Layout Randomization (ASLR). http://pax.grsecu
rity.net/docs/aslr.txt, 2003.

[34] H. Peng and M. Payer. USBFuzz: A Framework for Fuzzing USB Drivers by
Device Emulation. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security), pages 2559–2575, Virtually, Aug. 2020.

[35] M. Schloegel, N. Bars, N. Schiller, L. Bernhard, T. Scharnowski, A. Crump, A. Ale-
Ebrahim, N. Bissantz, M. Muench, and T. Holz. SoK: Prudent Evaluation Practices
for Fuzzing. In Proceedings of the 45th IEEE Symposium on Security and Privacy
(IEEE S&P), pages 137–137, San Francisco, CA, May 2024.

[36] Z. Shen, R. Roongta, and B. Dolan-Gavitt. Drifuzz: Harvesting Bugs in Device
Drivers from Golden Seeds. In Proceedings of the 31st USENIX Security Symposium
(USENIX Security), pages 1275–1290, Boston, MA, USA, Aug. 2022.

[37] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui. Healer: Rela-
tion Learning Guided Kernel Fuzzing. In Proceedings of the 28th ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), pages 344–358, 2021.

[38] H. Sun, Y. Shen, J. Liu, Y. Xu, and Y. Jiang. KSG: Augmenting Kernel Fuzzing
with System Call Specification Generation. In Proceedings of 2022 USENIX Annual
Technical Conference (USENIX ATC), pages 351–366, 2022.

[39] Syzkaller developers. Syscall Description Language. https://github.com/google/
syzkaller/blob/master/docs/syscall_descriptions_syntax.md.

[40] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang. Detecting Kernel Refcount Bugs
with Two-Dimensional Consistency Checking. In Proceedings of the 30th USENIX
Security Symposium (USENIX Security), pages 2471–2488, Virtually, Aug. 2021.

[41] D. Vyukov. Syzbot Corpus. https://github.com/google/syzkaller/blob/3af7dd651d
c78ce0784bef793d14dd2f72d07138/tools/demo_setup.sh#L38, 2023. corpus.

[42] D. Vyukov and A. Konovalov. Syzbot and the Tale of Thousand Kernel Bugs,
2018. Linux Security Summit.

[43] D. Vyukov and A. Konovalov. Syzkaller: An Unsupervised, Coverage-guided
Kernel Fuzzer. https://github.com/google/syzkaller, 2019.

[44] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song. Be Sensitive and Collaborative:
Analyzing Impact of Coverage Metrics In Greybox Fuzzing. In Proceedings of
the 22nd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), Sept. 2019.

[45] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou. FUZE: Towards Facilitating
Exploit Generation for Kernel Use-After-Free Vulnerabilities. In Proceedings of the
27th USENIX Security Symposium (USENIX Security), pages 781–797, Baltimore,
MD, Aug. 2018.

[46] Y. Wu, Z. Lin, Y. Chen, D. K. Le, D. Mu, and X. Xing. Mitigating Security Risks in
Linux with KLAUS: A Method for Evaluating Patch Correctness. In Proceedings
of the 32nd USENIX Security Symposium (USENIX Security), pages 4247–4264,
Anaheim, CA, USA, Aug. 2023.

[47] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu. From Collision to
Exploitation: Unleashing Use-After-Free Vulnerabilities in Linux Kernel. In Pro-
ceedings of the 22nd ACM Conference on Computer and Communications Security
(CCS), pages 414–425, Denver, Colorado, Oct. 2015.

[48] M. Yuan, B. Zhao, P. Li, J. Liang, X. Han, X. Luo, and C. Zhang. DDRace: Finding
Concurrency UAF Vulnerabilities in Linux Drivers with Directed Fuzzing. In
Proceedings of the 32nd USENIX Security Symposium (USENIX Security), pages
2849–2866, Anaheim, CA, USA, Aug. 2023.

[49] M. Zalewski. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/afl.
[50] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshitaishvili, and T. Bao. Playing

for K(H)eaps: Understanding and Improving Linux Kernel Exploit Reliability.
In Proceedings of the 31st USENIX Security Symposium (USENIX Security), pages
71–88, Boston, MA, USA, Aug. 2022.

[51] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian. SyzScope: Revealing High-Risk
security impacts of Fuzzer-Exposed bugs in linux kernel. In Proceedings of the
31st USENIX Security Symposium (USENIX Security), pages 3201–3217, Boston,
MA, USA, Aug. 2022.

https://github.com/torvalds/linux/blob/master/include/linux/refcount.h
https://github.com/torvalds/linux/blob/master/include/linux/refcount.h
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://docs.microsoft.com/en/windows/desktop/com/rules-for-managing-reference-counts
https://docs.microsoft.com/en/windows/desktop/com/rules-for-managing-reference-counts
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/3af7dd651dc78ce0784bef793d14dd2f72d07138/tools/demo_setup.sh#L38
https://github.com/google/syzkaller/blob/3af7dd651dc78ce0784bef793d14dd2f72d07138/tools/demo_setup.sh#L38
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Background and Problem
	2.1 Refcount in Linux Kernel
	2.2 Refcount-related Use-after-free
	2.3 Existing Techniques of Kernel Fuzzing
	2.4 Limitations of Previous Methods

	3 Approach Overview
	4 Design of CountDown
	4.1 Recording Refcount Operations
	4.2 Reshaping Syscall Relation
	4.3 Refcount-guided Program Mutation

	5 Implementation
	5.1 Selective Recording for Efficiency
	5.2 Generic Refcounts
	5.3 Multiprocess Support

	6 Evaluation
	6.1 Bug Finding
	6.2 Code Coverage
	6.3 Contribution of Each Component
	6.4 Refcount-based Relation Learning
	6.5 Instrumentation Overhead

	7 Related work
	7.1 Syscall Grammar Inference
	7.2 Kernel Fuzzers for Concurrency Bugs
	7.3 Static Analyzers to Detect Refcount Issues

	8 Conclusion
	References

