
Automatically Assessing Crashes from
Heap Overflows

Liang He∗, Yan Cai†, Hong Hu‡, Purui Su∗†§, Zhenkai Liang‡, Yi Yang∗,
Huafeng Huang∗, Jia Yan∗, Xiangkun Jia∗, Dengguo Feng∗†

∗Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

†State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China
‡Department of Computer Science, National University of Singapore

{heliang, purui, yangyi, yanjia, huafeng}@iscas.ac.cn, liangzk@comp.nus.edu.sg,
{ycai.mail, huhong789, ajiahit}@gmail.com, fengdg@263.net

Abstract—Heap overflow is one of the most widely exploited
vulnerabilities, with a large number of heap overflow instances
reported every year. It is important to decide whether a crash
caused by heap overflow can be turned into an exploit. Efficient
and effective assessment of exploitability of crashes facilitates to
identify severe vulnerabilities and thus prioritize resources. In
this paper, we propose the first metrics to assess heap overflow
crashes based on both the attack aspect and the feasibility aspect.
We further present HCSIFTER, a novel solution to automatically
assess the exploitability of heap overflow instances under our
metrics. Given a heap-based crash, HCSIFTER accurately detects
heap overflows through dynamic execution without any source
code or debugging information. Then it uses several novel
methods to extract program execution information needed to
quantify the severity of the heap overflow using our metrics. We
have implemented a prototype HCSIFTER and applied it to assess
nine programs with heap overflow vulnerabilities. HCSIFTER
successfully reports that five heap overflow vulnerabilities are
highly exploitable and two overflow vulnerabilities are unlikely
exploitable. It also gave quantitatively assessments for other two
programs. On average, it only takes about two minutes to assess
one heap overflow crash. The evaluation result demonstrates both
effectiveness and efficiency of HCSIFTER.

Index Terms—Memory error, Heap overflow, Vulnerability
assessment

I. INTRODUCTION

Heap-based buffer overflow is one of the most widely
exploited vulnerabilities in recent security incidents. High-
risk heap overflow errors can be leveraged by attackers to
execute arbitrary code or leak sensitive information (such as
passwords and encryption keys) while low-risk heap overflow
errors may only lead to Denial of Service attack (DoS). Given
the large number of heap overflow errors reported every year,
it is ideal to assess their severity efficiently and effectively,
so that resources can be allocated towards high-risk ones for
timely analysis and patching. The representative assessment of
the severity is the exploitability – the likelihood that a heap

§Corresponding author.

overflow error can be utilized to launch the attacks to run
arbitrary code.

An ultimate way to demonstrate the exploitability of a
vulnerability is to generate working exploits. Previous work-
s [1], [2], [3], [4] study the practical viability to automatically
generate exploits. One mechanism is to symbolically execute
the whole program and capture the program constraints as
predicates. Then it generates working exploits by solving the
constraints. AEG [1] and Mayhem [2] are representative ones
in this category. Though using exploit generation as a way
for assessment is accurate, they cannot generate exploits for
all potential vulnerabilities due to the limitation in program
analysis techniques.

Another assessment method is to analyze the code executed
after the crash point – the instruction leading to the program
crash. For example, the !exploitable tool [5] developed by
Microsoft checks all instructions in the same basic block as
the crash point to find exploit points – the exploitable special-
purposed instructions, like control-flow-transfer instructions
(e.g., call and jmp) or condition-affecting instructions (e.g.,
cmp followed by jnz). CRAX [3] takes a mixed method
with these two techniques: starting from the crash point,
it symbolically executes the program to find exploit points.
The weakness of this type of solutions is the correctness of
results. The corruption usually affects the original program
behavior (e.g., due to crashes on dereferencing pointers from
the overflowed memory), preventing these techniques from
finding any exploitable points. Moreover, these tools will stop
work when a crash occurs, leading missed potential exploit
points.

In this paper, we aim to address the challenge in automat-
ically assessing the exploitability of crashes caused by heap
overflow when no working exploits can be easily generated.
We propose a set of metrics to quantify the exploitability of
heap overflows. To the best of our knowledge, this is the first
approach that aims to automatically assess the exploitability
of heap overflows. Our metrics are based on two aspects:



the Attack Metrics and the Feasibility Metrics. The former
measures the potential threats of a heap overflow and the
latter measures the specific difficulties to build a real working
exploit.

Based on the metrics, we present a framework, HCSIFTER1,
for automatic heap overflow crash assessment. HCSIFTER
accurately detects heap overflow errors through dynamic pro-
gram analysis. It tracks all heap objects and checks related
operations to find the out-of-bound heap memory accesses.
The detection happens right before the real execution of the
corruption point – the instruction leading to the heap overflow.
To extract features of the overflow’s impact on the program
execution, HCSIFTER dynamically carries out data recovery in
the corrupted memory region, so that the program can continue
its normal execution for our analysis. Note that, compared
with other dynamic approaches, this is a key step to continue
the execution after a heap overflow occurrence without any
crashes, enabling HCSIFTER to explore additional exploitable
points. During the dynamic subsequent execution, HCSIFTER
tracks all recovery memory regions and detects exploits based
on exploit patterns. We also identify several novel strategies
that enable HCSIFTER to detect exploit points missed by other
techniques.

In this paper, we aim to assess a single path from a given
crash. If multiple paths exist, our technique can be applied
on each path separately. It is possible to find other paths
from a crash with fuzzing tools [6], [7] or symbolic execution
tools [8], [9].

In summary, the contributions of this paper include:

• We propose a set of novel metrics for quantifying the
severeness of heap overflow crashes. Our metrics mea-
sures the challenges to convert crashes into exploits, in-
cluding both the potential attack aspect and the feasibility
aspect.

• We design and implement a prototype tool HCSIFTER,
which automatically assesses the exploitability of giv-
en heap overflows based on our metrics. HCSIFTER
introduces dynamic memory recovery and second-order
overflow to automatically assess the difficulties for exploit
generation.

• We evaluated HCSIFTER using real-world vulnerable
programs. The results demonstrated both the effectiveness
and efficiency of HCSIFTER.

II. PROBLEM DEFINITION AND CHALLENGES

In this paper, we aim to assess the exploitability of given
heap overflow errors. We define the problem as follows:
Assessment of Heap Overflow Crash: Given a binary with a
heap overflow bug, and a proof of concept (PoC) that crashes
the program, we aim to quantify the severeness of the error,
i.e., the likelihood for attackers to further develop this crash
into a working exploit, such as arbitrary memory access or
code execution attacks.

1Standing for Heap Crash Sifter.

TABLE I
Exploit Point Types. “taint” means user input data.

Exploit Points Description
call/jmp taint Directly call/jump into the tainted target
call/jmp [taint] Indirectly call/jump into the target with a tainted

address
mov [taint1], taint2 Write a tainted value taint2 into the memory

location with a tainted address taint1
mov [taint1], [taint2] Read the value at a tainted address taint1 and

write it to the tainted address taint2
critical func(taint) Control the arguments of security-critical func-

tions

Different from exploit generation [1], [2], [3], [4], which
generates a concrete working exploit, we aim to estimate the
level of difficulty for attackers to build a working exploit. The
output should be a quantitative assessment that describes the
severity of the error. For example, program developers can use
the assessment result to prioritize the fix of highly exploitable
overflows, considering the limited human resources. Further,
the assessment result can also be used by exploit generation
tools to focus on overflows with high exploitability.
Challenges in Assessment: Our approach is based on dynamic
program analysis to address the problems. Several challenges
must be resolved:

• C1: Preserving the program execution. In the dynamic
code analysis, the first consideration is to continue the
program execution after the corruption point, which is
required by our approach to further analyze the impact
of the overflow. Directly continuing the execution after a
heap overflow is infeasible, as the subsequent execution
usually crashes due to invalid memory access.

• C2: Bypassing the integrity checks. It is problematic
if a heap overflow overwrites the meta data of free
heap chunks, such as the backward and forward pointers,
which are protected by heap manager. If the overflow has
to overwrite the meta data to reach one exploit point, the
attack needs to bypass the integrity checks of heap data
structure.

• C3: Preserving the memory layout. Heap memory is
dynamically allocated by the heap manager. The order of
heap allocation and free significantly affects the memory
layout. Analysis code in the same memory space with
the vulnerable program may change the memory layout,
and thus affect the assessment of the exploitability. The
analysis should be performed in a different memory space
from the vulnerable program.

III. EXPLOITABILITY METRICS

As one of our main contributions, we first propose two
kinds of metrics to measure the severity of heap overflow
crashes. The metrics should not only reflect the possible
exploit methods an attacker may choose, but also the difficulty
to build working exploit in real-world programs. Specifically,
we define two types of metrics to assess the features of the
crashing program: Attack Metrics and Feasibility Metrics.



A. Attack Metrics

Attack metrics describe the potential risks that a heap over-
flow may introduce. Intuitively, if a heap overflow introduces
more risks (e.g., corrupt more function pointers), it becomes
easier for attackers to utilize the overflow.

1) Exploit Point (Exp): As different exploit points have
different attack power, we define five types of exploit
points as shown in Table I, where taint1 and taint2
indicates the user input data. This metric is crucial as
more exploit points means higher exploitability of the
error.

2) Overflow Bytes (OB): A larger memory area corrupted
by a heap overflow usually means a higher threat. And
it also means that more exploit points may be found.
We use the number of the overflowed bytes to depict
the basic information of a heap overflow.

3) Taint Bytes (TB): For attackers who exploit a heap
overflow to execute arbitrary code usually need to fill
a proper length of payload within the input data. It is a
common fact that a more complex payload needs more
space to be filled with. So having more taint bytes means
the ability to fill more complicate payload.

4) Taint Relation (TR): We need to confirm that the
overflow bytes are tainted (i.e., from user input data).
If so, attackers could provide arbitrary payload (i.e.,
malicious code) to fill with them. We use this metric
as the basic information of heap overflow.

B. Feasibility Metrics

Feasibility metrics depict the difficulties to build a real
working exploit. We define two kinds of feasibility metrics.
The first one is the count of various pointers corrupted by
heap overflow, and the second one is the value constraint of
overflowed bytes. Intuitively, if a heap overflow involves more
such elements (e.g., more pointers that will be dereferenced),
it becomes more difficult to exploit the overflow.

1) Pointer Dereference Count (PDC) As one main chal-
lenge faced by attackers is to ensure that all the memory
accesses along the program path during an attack are not
affected. Otherwise, memory dereference may lead to
the program crash due to corrupted pointers. Based on
the types of pointers possibly corrupted, we define the
pointer dereference count as a four-tuple which includes
the counts of four types of pointers:

• Index Pointer (IP) where the corrupted data is
an index pointer (offset) of a memory access, for
example, mov eax, [ebx + esi × 5]. The
register esi is used as the index pointer in the
memory access and a memory access error will
happen if esi is loaded with a large number.
However, it is not difficult for attackers to preserve
the correctness of such memory accesses (e.g., set
the register esi to be 0).

• Base Pointer (BP) where the corrupted data is a
base of a memory access for fetching data, for

example, mov eax, [ebx + esi × 5]. The
register ebx is used as the base pointer for memory
access. Due to the address randomization [10], it
is challenging to guess all the randomized pointer
values correctly to avoid the crash.

• Multilevel Pointer (MP) where the corrupted data
is an pointer to another pointer. Compared to BP,
where attackers can search and use any existed
memory, it is more challenging for attackers to find
a proper pointer’s pointer.

• Protected Pointer (PP): OS or special program
logic checks or protects whether a pointer is corrupt-
ed, such as the Safe Unlinking of Windows. This
usually means that the exploiting process is very
difficult and attackers have to bypass the protection
checking.

Specifically, based on the real-world situation, we define
the order of difficulty levels for these metrics as follows,
with increasing difficulty to exploit:

IP < BP < MP < PP
2) Value Constraint (VC): Different applications usually

have their own strategies to check the validation of var-
ious input data. In this work, we only extract the value
constraints for the data used to overwrite heap memory.
Note that, VC does not directly affect our assessment;
however, it plays an important role in building working
exploits as it strictly indicates that some characters (e.g.,
0x0, 0xA) cannot appear in the designed payload by
attackers.

IV. HCSIFTER FRAMEWORK

We present the design details of our framework, HCSIFTER.
As shown in Figure 1, HCSIFTER works in three steps:
heap overflow identification, exploit point shortlisting, and
exploitability assessment. It tracks all heap-related operations
with a multi-semantic taint analysis engine, which treats the
input PoC, heap object, and recovery memory as different
kinds of taint data. Then HCSIFTER detects cross-boundary
heap accesses at both the instruction level and the function
level (Section IV-A). It then identifies memory objects that can
be exploited by attackers (Section IV-B). We further analyze
exploitable code patterns and identify second-order overflow
attack techniques. In the last step, for each exploitable code
pattern, HCSIFTER analyzes related memory operations to
evaluate the difficulty level of exploitability (Section IV-C).

A. Heap Overflow Identification

The goal of this step is to identify the location of the heap
overflow vulnerability, so that we can record and recover the
corrupted data by heap overflow. HCSIFTER utilizes dynamic
taint analysis [11] to identify heap overflows. We firstly taint
the base address and the size of the allocated heap blocks.
When accessing tainted memory addresses, we check whether
the access is out of the bound of the allocated heap blocks.



Exploitability 
Assessment

Exploit Point 
Shortlisting

Heap Overflow 
Identification

Program

Input

Multi-Semantic 
Taint Analysis

Recovery

Heap 
allocation

ExploitabilityExploit
Points? Yes

Assess

…Sn
ap

sh
o

t

Fig. 1. The HCSIFTER framework. HCSIFTER takes as inputs the binary of the vulnerable program and the error-exhibiting input. It executes the program in
a virtual environment to detect the heap overflow at run-time. Then HCSIFTER restores the memory to continue the execution. At last, it detects the exploit
points and evaluates the exploitability.

Taint Source. To label information of the allocated heap
blocks as tainted, HCSIFTER hooks the heap allocation func-
tions (e.g.,RtlAllocateHeap on Windows system).
Taint Propagation. HCSIFTER propagates the taint value
at the instruction level using the standard taint propagation
mechanism. Due to taint explosion [12], HCSIFTER does not
take control-flow dependencies into account. More details on
taint analysis can be found in [13], [14].
Taint Checking. With the base address and the size infor-
mation propagated by taint analysis, HCSIFTER checks every
memory access to identify heap overflows. Specifically, for an
instruction involving a pointer, it retrieves the taint value of the
pointer operand used for the memory access. From the taint
value, it restores the base address of the heap object and the
allocated size. It then checks whether the pointer value falls
into the base address and the end address of the heap object.

B. Exploit Point Shortlisting

Once the heap overflow vulnerability is detected, HC-
SIFTER analyzes the heap memory that can be corrupted by the
overflow to identify data types (discussed in the second point
below) that can be exploited by attackers. We first present the
techniques for recovering the program’s execution after the
heap overflow.

1) Dynamic Heap Data Recovery: As discussed in Sec-
tion II, the first challenge to detect exploit points is to preserve
the program execution after the memory corruption. To address
this challenge (C1), HCSIFTER recovers the corrupted data
back to the uncorrupted version, so that the program can
continue its execution without any crash. By watching the
following executed instructions, we can find the usage of the
corruptible data. The usage of the data is important to assess
the exploitability. We use dynamic taint analysis to track the
corruptible data. During the dynamic data recovery, we label
each recovered data with the offset from the first overflowed
bytes. In the following execution, we propagate the taint value
as for the heap pointers.

2) Exploit Point Detection: We aim to detect the exploit
points – the instructions that can be used by attackers to launch
attacks – based on the data type affected by the heap overflow.
We classify data into types like code pointers, data pointers,

loop bounds. The data type can be inferred by the program’s
behavior. A heap data can directly affect program’s code
execution or the memory access if some program variables
derived from it (tainted by its offset) are used as pointers to
code and data. In addition, a heap object can indirectly affect
memory accesses if memory addresses are control-dependent
on it. Control-dependent means the heap object affects the
control flow, and at the same time, the memory access happens
inside the code under the control. For example, if a heap data
is used as a counter of one loop, the memory access in the
loop body is control-dependent on this heap data.

3) Exploitability by Second-Order Overflow: To address the
challenge (C2), we identify an interesting heap meta data that
can cause second-order heap overflows. It is the size field in
the header of a free chunk. The method to trigger the second-
order overflow is to change the value of size field into a
larger value. We call this method SizeOverflow.

The basic idea is, during heap allocation, if the heap
manager checks the value of size field in the header of
the overflowed free chunk, whose value has been tampered
be to a larger one (e.g., 0xFFFF), then this free chunk will
be allocated. The following memory access into this chunk
may lead to new buffer overflows, as its size is believed to
be larger than the actual one. This opens a new chance to
explore additional exploit points. Compared with the exploit
type defined in Section III-A which are Direct Exploit Point
(DExp), we call this data as Indirect Exploit Point (IExp).

C. Exploitability Assessment

Besides the exploit points, HCSIFTER collects the feasibil-
ity metrics, especially the count of pointer dereferences, from
the corruption points to exploit points. This kind of metrics
will depict the real difficulty to reach the exploit points. We
assess the exploitability with two basic rules as follows:

• Rule-1: If there is no pointer dereference from the cor-
ruption point to any direct exploit point, we treat it as an
EXPLOITABLE error. If there is any pointer dereference
from the corruption point to any exploit point, we treat it
as a DIFFICULT error and we use nearest exploit point’s
highest difficulty level, defined in Section III-B as the
assessment result.



TABLE II
Exploitability Assessment Overview. The 2nd main columns give the details of heap overflow. (1-1)* means indirect table look-up operation, B!0x0 means

each byte cannot be 0x0, B!0xA means each byte cannot be 0xA. []+ means further exploitability is possible with a higher-order (> 2nd-order) overflow.

Programs Heap Overflow Information Basic Metrics Exploitability Assessment
Instruction Function OB TB TR VC !exploitable HCSIFTER

1ClickUnzip mov [edx],al lstrcpyA 2433 6573 (1-1) B!0x0 3 [IP]+
Acousitca Converter mov [eax+edx], cl lstrcpyA 1092 10613 (1-1) B!0x0 UNKNOWN [BP+PP]
CoreFTP Client rep movsd recv 8910 17653 (1-1) B!0xA UNKNOWN [IP]
FoxitReader mov [edx],al lstrcpyA 4241 443 (1-1)* B!0x0 3 3
HTTPDX rep movsd memcpy 1049 1059 (1-1) B!0xA UNKNOWN [BP+PP]
Python rep movsd memcpy 64745 723419 (1-1)* B!0x0 3 3
Vallen Zipper mov [edx],al lstrcpyA 4021 8443 (1-1) B!0x0 UNKNOWN 3
WMPlayer rep movsd - 2524 2547 (1-1) - 3 3
ZipItFast - ReadFile 4021 20899 (1-1) - 3 3

• Rule-2: If the error is reported as DIFFICULT according
to Rule-1 and there exists any indirect exploit point from
corruption point to the nearest exploit point, we enable
the second-order overflow and repeat the assessment with
the rule above.

We measure the pointer dereference as follows:
• We collect all instructions between the corruption point

and the exploit point that access tainted address to def-
erence memories, and put them into a set S.

• We retrieve the offsets of the bytes that affect the exploit
point, and find the maximum offset Max.

• For any instruction inside S, if its memory operand is
tainted with offset off and off ≤ Max, we count the
dereferences by its types.

• The final value of the derefCount is the number of
necessary tainted dereferences.

V. IMPLEMENTATION AND EVALUATION SUMMARY

A. Implementation

We extend QEMU [15] to support the instruction instrumen-
tation and the dynamic taint analysis outside the guest system.
Unlike the TEMU [16] that needs to install extra drivers into
guest system, we only use the emulated hardware information
provided by QEMU to implement our system. By doing so,
we can preserve the memory layout of guest system(C3).

HCSIFTER uses the udis86 library [17] to help disassemble
x86 instructions. Our implementation supports about 200 x86
instructions for dynamic taint analysis, including the special
support for float point registers (FPU) and SSE registers
(XMM, MMX). Our implementation totally contains more
than 36,000 lines of code, including 12,000 lines of C code
for dynamic instruction instrumentation and data recovery in
QEMU and 24,000 lines of C/C++ code for multi-semantic
taint analysis and exploitability assessment.

B. Summary of Evaluation

1) Benchmarks and Experiment Setup: We configure HC-
SIFTER to run on a platform with 8 core-CPU, 8GB RAM,
installed with Ubuntu 16.04 (x86-64) system. We run Windows
XP-SP2 as a guest virtual machine to execute the vulnerable

programs. To evaluate HCSIFTER, we collect 9 Windows
programs with heap overflows from exploit-db [18]. All these
programs are available either on the exploit-db site or at their
official websites.

2) Efficacy in Exploitability Assessment: we apply HC-
SIFTER on the nine real-world heap overflow programs with
crash PoCs and compare the result with the widely used tool
!exploitable. HCSIFTER demonstrates its ability to accurately
locate heap overflow instructions, which is the base of our
assessment. As shown in the column of Heap Overflow
Information, HCSIFTER confirms all nine known heap
overflows. The major column Basic Metrics in Table II
shows the assessment reported by HCSIFTER. In the column
Exploitability Assement of Table II, we show the
exploitability assessment for all nine programs. It reports that
five programs can be “directly exploited” and two programs
almost cannot be exploited, unless the attackers have the
ability to bypass the integrity checker ([BP+PP]). Besides
there are two “easily exploited” (1ClickUnzip and CoreFtp
Client) as the attack is constrained only by index pointers
([IP]).

3) Importance of Indirect Exploit Points and SizeOverflow:
Indirect exploit points play an important role in the exploitabil-
ity assessment. Among five exploitable programs, one of them
(i.e., FoxitReader) can only be easily attacked with the indirect
exploit points, as it has one BP before the direct exploit point
in the first round. Two programs, the 1ClickUnzip and the
CoreFTP Client, only leave the exploit chance in the indirect
exploit points. For 1ClickUnzip, the indirect exploit points in
the second round provides further exploitability.

4) Assessment Performance: Our performance evaluation
shows that HCSIFTER can finish one assessment efficiently,
with less than 2 minutes on average and at most 5 minutes. For
the memory overhead, HCSIFTER uses 52 MB more memory
on average than the original QEMU execution. Such a memory
consumption is acceptable on modern systems.

VI. RELATED WORK

There are two main aspects related to our work in this paper.
The first one is the automatic exploitation generation. The



second is the detection of software overflows, especially the
heap overflow as focused in this paper.
Automatic Exploitation Generation. Brumley et al. [19] pro-
posed the first patch-based automated exploitation of software
vulnerabilities. Later, by integrating preconditioned symbolic
execution and dynamic instruction instrumentation, Avgerinos
et al. [1] implemented the first end-to-end system for fully
automatic exploit generation. In practice, it is common that
program source code is unavailable. Therefore, binary code
based exploit generation is required. Mayhem [2] is the first
one practically targeting on binary programs to automatically
generate exploitation. PolyAEG [20] further targets to generate
multiple exploits for a given vulnerable program based on
control flow hijacking and redirection. FlowStitch [4] targets
to automatically generate data-oriented exploits by searching
ways to join program data flows.
Detection of Heap Overflows. Robertson et al. proposed to
append additional protection data at the head or the tail of a
heap to detect buffer overflows [21]. During a buffer overflow,
the protection data is broken and can then be detected. Besides
the protect data, inaccessible memory pages could also be
allocated to detect buffer overflows [22]. Low-fat pointer [23]
takes a method to detect heap overflow at run-time. It encodes
the heap object information in addresses, to propagate the
information, and to detect the buffer overflow.

The most related work to our approach is proposed by
Slowinska et al. [24], which is based on binary data structure
reversal. The approach assigns different colors to different
heaps and monitors each heap access. However, this approach
heavily relies on binary data reversal, which will result in
imprecision (i.e., false negatives).

VII. CONCLUSION

Heap overflow is a severe threat to computer programs.
However, it is a tedious work to determine whether a heap
overflow is exploitable or not. In this paper, we propose
HCSIFTER, a platform that automatically evaluates the ex-
ploitability of given heap overflows. HCSIFTER incorporates
two kinds of metrics proposed in this paper to assess a heap
overflow crash. We implement HCSIFTER as a prototype and
evaluate it with nine real-world vulnerable programs. The
experimental results show that HCSIFTER is effective and
efficient on evaluating heap overflows.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No. 61602457, 61572483, 61502469,
61502465), National 973 Program of China (2014CB340702)
and the Youth Innovation Promotion Association of the Chi-
nese Academy of Sciences (YICAS) (2017151).

REFERENCES

[1] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
Automatic Exploit Generation,” in Proceedings of the 18th Annual
Network and Distributed System Security Symposium, 2011.

[2] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in Proceedings of the 33rd IEEE Symposium
on Security and Privacy, 2012.

[3] S. K. Huang, M. H. Huang, P. Y. Huang, and C. W. Lai, “CRAX:
Software Crash Analysis for Automatic Exploit Generation by Mod-
eling Attacks as Symbolic Continuations,” in Proceedings of the 6th
International Conference on Software Security and Reliability, 2012.

[4] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
Generation of Data-Oriented Exploits,” in Proceedings of the 24th
USENIX Security Symposium, 2015.

[5] “!exploitable Crash Analyzer,” http://msecdbg.codeplex.com/.
[6] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/afl/.
[7] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing

for Security Testing,” Queue, vol. 10, no. 1, January 2012.
[8] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic

Generation of High-coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008.

[9] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-
vivo Multi-path Analysis of Software Systems,” in Proceedings of the
16th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[10] PaX Team, “PaX Address Space Layout Randomization (ASLR),” http:
//pax.grsecurity.net/docs/aslr.txt, 2003.

[11] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum,
“Understanding Data Lifetime via Whole System Simulation,” in Pro-
ceedings of the 13th Conference on USENIX Security Symposium, 2004.

[12] E. Andrey, K. Sachin, S. Shenker, L. Fowler, and M. McCauley,
“Towards Practical Taint Tracking,” in Technical Report No. UCB/EECS-
2010-92, 2010.

[13] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted to
Know About Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask),” in Proceedings of the 31st IEEE
Symposium on Security and Privacy, 2010.

[14] X. Jia, C. Zhang, P. Su, Y. Yang, H. Huang, and D. Feng, “Towards
efficient heap overflow discovery,” in 26th USENIX Security Symposium,
2017.

[15] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the USENIX Annual Technical Conference, 2005.

[16] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A New
Approach to Computer Security via Binary Analysis,” in Proceedings
of the 4th International Conference on Information Systems Security,
2008.

[17] “Udis86 Disassembler Library for x86 and x86-64,” https://github.com/
vmt/udis86.

[18] “Offensive Security Exploit Database Archive ,” https://www.exploit-
db.com/.

[19] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic Patch-
Based Exploit Generation is Possible: Techniques and Implications,” in
Proceedings of the 29st IEEE Symposium on Security and Privacy, 2008.

[20] M. Wang, P. Su, Q. Li, L. Ying, Y. Yang, and D. Feng, “Automatic
Polymorphic Exploit Generation for Software Vulnerabilities,” in Pro-
ceedings of the 9th International Conference on Security and Privacy
in Communication Networks, 2013.

[21] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur, “Run-time Detection
of Heap-based Overflows,” in Proceedings of the 17th USENIX Confer-
ence on System Administration, 2003.

[22] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis, “A Dynamic Mech-
anism for Recovering from Buffer Overflow Attacks,” in Proceedings of
the 8th International Conference on Information Security, 2005.

[23] G. J. Duck and R. H. C. Yap, “Heap Bounds Protection with Low
Fat Pointers,” in Proceedings of the 25th International Conference on
Compiler Construction, 2016.

[24] A. Slowinska, T. Stancescu, and H. Bos, “Body Armor for Binaries:
preventing buffer overflows without recompilation,” in Proceedings of
the Usenix Technical Conference, 2012.


